14 research outputs found
Protease-activated receptor 2 contributes to Toxoplasma gondii-mediated gut inflammation
Toxoplasma gondii is a widespread intracellular parasite, which naturally enters the organism via the oral route and crosses the intestinal barrier to disseminate. In addition to neuronal and ocular pathologies, this pathogen also causes gut inflammation in a number of animals. This infection-triggered inflammation has been extensively studied in the C57BL/6 mice, highlighting the importance of the immune cells and their mediators in the development of gut pathology. However, despite their importance in inflammation, the role of protease-activated receptors (PAR) was never reported in the context of T.gondii-mediated small intestine inflammation. Using genetically modified mice, we show that PAR(2) plays a pathogenic role in the development of gut inflammatory lesions. We find that PAR(2) controls the innate inflammatory mediators IL-6, KC/CXCL1, PGE(2) as well as neutrophil infiltration in T. gondii-triggered gut damage. These results bring new knowledge on the mechanisms operating in the gut in response to T. gondii infection
Ibrutinib does not prevent kidney fibrosis following acute and chronic injury
Abstract Recent studies suggested that ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, developed for the treatment of chronic lymphocytic leukemia, may prevent NLRP3 inflammasome activation in macrophages, IL-1ÎČ secretion and subsequent development of inflammation and organ fibrosis. The role of NLRP3 has been underlined in the various causes of acute kidney injury (AKI), a pathology characterized by high morbimortality and risk of transition toward chronic kidney disease (CKD). We therefore hypothesized that the BTK-inhibitor ibrutinib could be a candidate drug for AKI treatment. Here, we observed in both an AKI model (glycerol-induced rhabdomyolysis) and a model of rapidly progressive kidney fibrosis (unilateral ureteral obstruction), that ibrutinib did not prevent inflammatory cell recruitment in the kidney and fibrosis. Moreover, ibrutinib pre-exposure led to high mortality rate owing to severer rhabdomyolysis and AKI. In vitro, ibrutinib potentiated or had no effect on the secretion of IL-1ÎČ by monocytes exposed to uromodulin or myoglobin, two danger-associated molecule patterns proteins involved in the AKI to CKD transition. According to these results, ibrutinib should not be considered a candidate drug for patients developing AKI
Leucine-Rich Alpha-2 Glycoprotein 1 Accumulates in Complicated Atherosclerosis and Promotes Calcification
Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoEâ/â) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis
Haploinsufficiency of the mouse Tshz3 gene leads to kidney dysfunction
Abstract Renal tract defects and autism spectrum disorder (ASD) deficits represent the phenotypic core of the 19q12 deletion syndrome caused by the loss of one copy of the TSHZ3 gene. While a proportion of Tshz3 heterozygous ( Tshz3 +/lacZ ) mice display ureteral defects, no kidney defects have been reported in these mice. The purpose of this study was to characterize the expression of Tshz3 in adult kidney as well as the renal physiological consequences of embryonic haploinsufficiency of Tshz3 by analyzing the morphology and function of Tshz3 heterozygous adult kidney. Here, we described Tshz3 expression in the smooth muscle and stromal cells lining the renal pelvis, the papilla and glomerular endothelial cells (GEnCs) of the adult kidney. Histological analysis showed that Tshz3 +/lacZ adult kidney had an average of 29% fewer glomeruli than wild type kidney. Transmission electron microscopy (TEM) of Tshz3 +/lacZ glomeruli revealed ultrastructural defects. Compared to wild type, Tshz3 +/lacZ mice showed no difference in their urine parameters but lower blood urea, phosphates, magnesium and potassium at 2 months of age. At the molecular level, transcriptome analysis identified differentially expressed genes related to inflammatory processes in Tshz3 +/lacZ compare to wild type (WT; control) adult kidneys. Lastly, analysis of the urinary peptidome revealed 33 peptides associated with Tshz3 +/lacZ adult mice. These results provide the first evidence that in the mouse Tshz3 haploinsufficiency leads to cellular, molecular and functional abnormalities in the adult mouse kidney
Apelin affects the mouse aging urinary peptidome with minimal effects on kidney
International audienceKidney function is altered by age together with a declined filtration capacity of 5-10% per decade after 35 years. Renal aging shares many characteristics with chronic kidney disease. Plasma levels of the bioactive peptide apelin also decline with age and apelin has been shown to be protective in chronic kidney disease. Therefore we evaluated whether apelin could also improve aging-induced renal lesions and function in mice. Since urine is for the major part composed of proteins and peptides originating from the kidney, we first studied apelin-induced changes, in the aging urinary peptidome. Despite the recently published age-associated plasma decrease of apelin, expression of the peptide and its receptor was increased in the kidneys of 24 months old mice. Twenty-eight days treatment with apelin significantly modified the urinary peptidome of 3 and 24 months old mice towards a signature suggesting more advanced age at 3 months, and a younger age at 24 months. The latter was accompanied by a decreased staining of collagen (Sirius red staining) in 24 months old apelin-treated mice, without changing aging-induced glomerular hypertrophy. In addition, apelin was without effect on aging-induced renal autophagy, apoptosis, inflammation and reduced renal function. In conclusion, treatment of aged mice with apelin had a limited effect on kidney lesions although modifying the urinary peptidome towards a younger signature. This supports evidence of apelin inducing more general beneficial effects on other aging organs, muscles in particular, as recently shown for sarcopenia, markers of which end up via the glomerular filtration in urine
Haploinsufficiency of the mouse Tshz3 gene leads to kidney defects
International audienceRenal tract defects and autism spectrum disorder (ASD) deficits represent the phenotypic core of the 19q12 deletion syndrome caused by the loss of one copy of the TSHZ3 gene. While a proportion of Tshz3 heterozygous (Tshz3+/lacZ) mice display ureteral defects, no kidney defects have been reported in these mice. The purpose of this study was to characterize the expression of Tshz3 in adult kidney as well as the renal consequences of embryonic haploinsufficiency of Tshz3 by analyzing the morphology and function of Tshz3 heterozygous adult kidney. Here, we described Tshz3 expression in the smooth muscle and stromal cells lining the renal pelvis, the papilla and glomerular endothelial cells (GEnCs) of the adult kidney as well as in the proximal nephron tubules in neonatal mice. Histological analysis showed that Tshz3+/lacZ adult kidney had an average of 29% fewer glomeruli than wild type kidney. Transmission electron microscopy (TEM) of Tshz3+/lacZ glomeruli revealed a reduced thickness of the glomerular basement membrane and a larger foot process width. Compared to wild type, Tshz3+/lacZ mice showed lower blood urea, phosphates, magnesium and potassium at 2 months of age. At the molecular level, transcriptome analysis identified differentially expressed genes related to inflammatory processes in Tshz3+/lacZ compare to wild type (WT; control) adult kidneys. Lastly, analysis of the urinary peptidome revealed 33 peptides associated with Tshz3+/lacZ adult mice. These results provide the first evidence that in the mouse Tshz3 haploinsufficiency leads to cellular, molecular and functional abnormalities in the adult mouse kidney
Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease
International audienceAbstract While blocking the renin angiotensin aldosterone system (RAAS) has been the main therapeutic strategy to control diabetic kidney disease (DKD) for many years, 25â30% of diabetic patients still develop the disease. In the present work we adopted a systems biology strategy to analyze glomerular protein signatures to identify drugs with potential therapeutic properties in DKD acting through a RAAS-independent mechanism. Glomeruli were isolated from wild type and type 1 diabetic (Ins2Akita) mice treated or not with the angiotensin-converting enzyme inhibitor (ACEi) ramipril. Ramipril efficiently reduced the urinary albumin/creatine ratio (ACR) of Ins2Akita mice without modifying DKD-associated renal-injuries. Large scale quantitative proteomics was used to identify the DKD-associated glomerular proteins (DKD-GPs) that were ramipril-insensitive (RI-DKD-GPs). The raw data are publicly available via ProteomeXchange with identifier PXD018728. We then applied an in silico drug repurposing approach using a pattern-matching algorithm (Connectivity Mapping) to compare the RI-DKD-GPsâs signature with a collection of thousands of transcriptional signatures of bioactive compounds. The sesquiterpene lactone parthenolide was identified as one of the top compounds predicted to reverse the RI-DKD-GPsâs signature. Oral treatment of 2Â months old Ins2Akita mice with dimethylaminoparthenolide (DMAPT, a water-soluble analogue of parthenolide) for two months at 10Â mg/kg/d by gavage significantly reduced urinary ACR. However, in contrast to ramipril, DMAPT also significantly reduced glomerulosclerosis and tubulointerstitial fibrosis. Using a system biology approach, we identified DMAPT, as a compound with a potential add-on value to standard-of-care ACEi-treatment in DKD
<b>Common mouse models of chronic kidney disease are not associated with cachexia</b>
The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.</p
Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice
International audienceBackground: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored.Objectives: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice.Methods: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces.Results: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota.Conclusions: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases
Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment
International audienceAlthough cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases