28 research outputs found

    Importance of dose-schedule of 5-aza-2'-deoxycytidine for epigenetic therapy of cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.</p> <p>Methods</p> <p>Clonogenic assays were performed on leukemic and tumor cell lines to evaluate the <it>in vitro </it>antineoplastic activity of DAC. The reactivation of TSGs and inhibition of DNA methylation by DAC were investigated by reverse transcriptase-PCR and Line-1 assays. The <it>in vivo </it>antineoplastic activity of DAC administered as an i.v. infusion was evaluated in mice with murine L1210 leukemia by measurement of survival time, and in mice bearing murine EMT6 mammary tumor by excision of tumor after chemotherapy for an <it>in vitro </it>clonogenic assay.</p> <p>Results</p> <p>Increasing the DAC concentration and duration of exposure produced a greater loss of clonogenicity for both human leukemic and tumor cell lines. The reactivation of the TSGs (<it>p57KIP2 </it>in HL-60 leukemic cells and <it>p16CDKN2A </it>in Calu-6 lung carcinoma cells) and the inhibition of global DNA methylation in HL-60 leukemic cells increased with DAC concentration. In mice with L1210 leukemia and in mice bearing EMT6 tumors, the antineoplastic action of DAC also increased with the dose. The plasma level of DAC that produced a very potent antineoplastic effect in mice with leukemia or solid tumors was > 200 ng/ml (> 1 ฮผM).</p> <p>Conclusion</p> <p>We have shown that intensification of the DAC dose markedly increased its antineoplastic activity in mouse models of cancer. Our data also show that there is a good correlation between the concentrations of DAC that reduce <it>in vitro </it>clonogenicity, reactivate TSGs and inhibit DNA methylation. These results suggest that the antineoplastic action of DAC is related to its epigenetic action. Our observations provide a strong rationale to perform clinical trials using dose intensification of DAC to maximize the chemotherapeutic potential of this epigenetic agent in patients with cancer.</p

    DNA methylation and methyl-CpG binding proteins: developmental requirements and function

    Get PDF
    DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function

    A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins.

    No full text
    A new class of poly(ADP-ribose) (pADPr)-binding proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), has been identified by a proteomic approach using matrix-assisted laser-desorption-ionization time-of-flight ('MALDI-TOF') MS. Liquid-phase isoelectric focusing with a Rotofor cell (Bio-Rad) allowed pre-fractionation of proteins extracted from HeLa cells. Rotofor protein fractions were further separated by SDS/PAGE and then transferred to a PVDF membrane. pADPr-binding proteins were analysed by autoradiography of the protein blot after incubation with (32)P-labelled automodified pADPr polymerase-1 (PARP-1). Peptide mass fingerprinting of selected bands identified the most abundant pADPr-binding proteins as hnRNPs, a family of proteins that bind pre-mRNA into functional complexes involved in mRNA maturation and transport to the cytoplasm. Sequence homology database searching against a previously reported pADPr-binding sequence motif revealed that the hnRNPs contain a putative pADPr-binding sequence pattern [Pleschke, Kleczkowska, Strohm and Althaus (2000) J. Biol. Chem. 275, 40974-40980]. pADPr-binding assays performed with synthetic peptides by the dot-blot technique and with nitrocellulose-transferred recombinant hnRNPs confirmed the pADPr-binding protein identification and the specificity of the interaction. These results could establish a link between increased levels of pADPr in DNA damaged cells and the modified protein expression pattern resulting from altered mRNA trafficking
    corecore