7 research outputs found

    Good News for Cabbageheads: Controlling Phelipanche aegyptiaca Infestation under Hydroponic and Field Conditions

    No full text
    Phelipanche aegyptiaca (Orobanchaceae) is a parasitic weed that causes severe yield losses in field crops around the world. After establishing vascular connections to the host plant roots, P. aegyptiaca becomes a major sink that draws nutrients, minerals, and water from the host, resulting in extensive crop damage. One of the most effective ways to manage P. aegyptiaca infestations is through the use of herbicides. Our main objective was to optimize the dose and application protocol of herbicides that effectively control P. aegyptiaca but do not damage the cabbage crop. The interactions between the cabbage roots and the parasite were first examined in a hydroponic system to investigate the effect of herbicides on initial parasitism stages, e.g., germination, attachment, and tubercles production. Thereafter, the efficacy of glyphosate and ethametsulfuron-methyl in controlling P. aegyptiaca was examined in five cabbage fields naturally infested with P. aegyptiaca. The herbicides glyphosate and ethametsulfuron-methyl were applied on cabbage foliage and in the soil solution, both before and after the parasite had attached to the host roots. A hormesis effect was observed when glyphosate was applied at a dose of 36 g ae ha−1 in a non-infested P. aegyptiaca field. Three sequential herbicide applications (21, 35, and 49 days after planting) effectively controlled P. aegyptiaca without damaging the cabbages at a dose of 72 g ae ha−1 for glyphosate and at all the examined doses for ethametsulfuron-methyl. Parasite control with ethametsulfuron-methyl was also effective when overhead irrigation was applied after the herbicide application

    Thermal time model for Egyptian broomrape ‎‎(Phelipanche aegyptiaca) parasitism dynamics in carrot ‎‎(Daucus carota L.): Field validation ‎

    Get PDF
    Carrot, a highly profitable crop in Israel, is severely damaged by Phelipanche aegyptiaca ‎parasitism. Herbicides can effectively control the parasite and prevent damage, but for ‎optimal results, knowledge about the soil-subsurface phenological stage of the parasite is ‎essential. Parasitism dynamics models have been successfully developed for the parasites P. ‎aegyptiaca, Orobanche cumana and O. minor in the summer crops, tomato, sunflower and ‎red clover, respectively. However, these models, which are based on a linear relationship ‎between thermal time and the parasitism dynamics, may not necessarily be directly ‎applicable to the P. aegyptiaca-carrot system. The objective of the current study was to ‎develop a thermal time model to predict the effect of P. aegyptiaca parasitism dynamics on ‎carrot growth. For development and validation of the models, data was collected from a ‎temperature-controlled growth experiment and from 13 plots naturally infested with P. ‎aegyptiaca in commercial carrot fields. Our results revealed that P. aegyptiaca development ‎is related to soil temperature. Moreover, unlike P. aegyptiaca parasitism in sunflower and ‎tomato, which could be predicted both a linear model, P. aegyptiaca parasitism dynamics ‎on carrot roots required a nonlinear model, due to the wider range of growth temperatures of ‎both the carrot and the parasite. Hence, two different nonlinear models were developed for ‎optimizing the prediction of P. aegyptiaca parasitism dynamics. Both models, a beta ‎function model and combined model composed of a beta function and a sigmoid curve, were ‎able to predict first P. aegyptiaca attachment. However, overall P. aegyptiaca dynamics was ‎described more accurately by the combined model (RMSE =14.58 and 10.79, respectively). ‎The results of this study will complement previous studies on P. aegyptiaca management by ‎herbicides to facilitate optimal carrot growth and handling in fields infested with P. ‎aegyptiaca.

    The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions

    No full text
    Broomrapes (Phelipanche spp. and Orobanche spp.) are holoparasitic plants that cause tremendous losses of agricultural crops worldwide. Broomrape control is extremely difficult and only amino acid biosynthesis-inhibiting herbicides present an acceptable control level. It is expected that broomrape resistance to these herbicides is not long in coming. Our objective was to develop a broomrape control system in tomato (Solanum lycopersicum L.) based on the plant growth regulator maleic hydrazide (MH). Petri-dish and polyethylene-bag system experiments revealed that MH has a slight inhibitory effect on Phelipanche aegyptiaca seed germination but is a potent inhibitor of the first stages of parasitism, namely attachment and the tubercle stage. MH phytotoxicity toward tomato and its P. aegyptiaca-control efficacy were tested in greenhouse experiments. MH was applied at 25, 50, 75, 150, 300, and 600 g a.i. ha-1 to tomato foliage grown in P. aegyptiaca-infested soil at 200 growing degree days (GDD) and again at 400 GDD. The treatments had no influence on tomato foliage or root dry weight. The total number of P. aegyptiaca attachments counted on the roots of the treated plants was significantly lower at 75 g a.i. ha-1 and also at higher MH rates. Phelipanche aegyptiaca biomass was close to zero at rates of 150, 300, and 600 g a.i. ha-1 MH. Field experiments were conducted to optimize the rate, timing and number of MH applications. Two application sequences gave superior results, both with five split applications applied at 100, 200, 400, 700, and 1000 GDD: (a) constant rate of 400 g a.i. ha-1; (b) first two applications at 270 g a.i. ha-1 and the next three applications at 540 g a.i. ha-1. Based on the results of this study, MH was registered for use in Israel in 2013 with the specified protocol and today, it is widely used by most Israeli tomato growers
    corecore