17 research outputs found
Bioanalytical assay development and validation for the pharmacokinetic study of gmc1, a novel fkbp52 co-chaperone inhibitor for castration resistant prostate cancer
Background: GMC1 (2-(1H-benzimidazol-2-ylsulfanyl)-N-[(Z)-(4-methoxyphenyl) methylideneamino] acetamide) effectively inhibits androgen receptor function by binding directly to FKBP52. This is a novel mechanism for the treatment of castration resistant prostate cancer (CRPC). Methods: an LC-MS/MS method was developed and validated to quantify GMC1 in plasma and urine from pharmacokinetics studies in rats. An ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters XTerra MS C18 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and methanol. A Sciex 4000 QTRAP® mass spectrometer was used for analysis by multiple reaction monitoring (MRM) in positive mode; the specific ions [M+H]+ m/z 340.995 → m/z 191.000 and [M+H]+ m/z 266.013 → m/z 234.000 were monitored for GMC1 and internal standard (albendazole), respectively. Results: GMC1 and albendazole had retention times of 1.68 and 1.66 min, respectively. The calibration curves for the determination of GMC1 in rat plasma and urine were linear from 1–1000 ng/mL. The LC-MS/MS method was validated with intra-and inter-day accuracy and precision within the 15% acceptance limit. The extraction recovery values of GMC1 from rat plasma and urine were greater than 95.0 ± 2.1% and 97.6 ± 4.6%, respectively, with no significant interfering matrix effect. GMC1 is stable under expected sample handling, storage, preparation and LC-MS/MS analysis conditions. Conclusions: Pharmacokinetic evaluation of GMC1 revealed that the molecule has a biexponential disposition in rats, is distributed rapidly and extensively, has a long elimination half-life, and appears to be eliminated primarily by first order kinetics
Bioanalytical assay development and validation for the pharmacokinetic study of gmc1, a novel fkbp52 co-chaperone inhibitor for castration resistant prostate cancer
Background: GMC1 (2-(1H-benzimidazol-2-ylsulfanyl)-N-[(Z)-(4-methoxyphenyl) methylideneamino] acetamide) effectively inhibits androgen receptor function by binding directly to FKBP52. This is a novel mechanism for the treatment of castration resistant prostate cancer (CRPC). Methods: an LC-MS/MS method was developed and validated to quantify GMC1 in plasma and urine from pharmacokinetics studies in rats. An ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters XTerra MS C18 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and methanol. A Sciex 4000 QTRAP® mass spectrometer was used for analysis by multiple reaction monitoring (MRM) in positive mode; the specific ions [M+H]+ m/z 340.995 → m/z 191.000 and [M+H]+ m/z 266.013 → m/z 234.000 were monitored for GMC1 and internal standard (albendazole), respectively. Results: GMC1 and albendazole had retention times of 1.68 and 1.66 min, respectively. The calibration curves for the determination of GMC1 in rat plasma and urine were linear from 1–1000 ng/mL. The LC-MS/MS method was validated with intra-and inter-day accuracy and precision within the 15% acceptance limit. The extraction recovery values of GMC1 from rat plasma and urine were greater than 95.0 ± 2.1% and 97.6 ± 4.6%, respectively, with no significant interfering matrix effect. GMC1 is stable under expected sample handling, storage, preparation and LC-MS/MS analysis conditions. Conclusions: Pharmacokinetic evaluation of GMC1 revealed that the molecule has a biexponential disposition in rats, is distributed rapidly and extensively, has a long elimination half-life, and appears to be eliminated primarily by first order kinetics
Bioanalytical assay development and validation for the pharmacokinetic study of gmc1, a novel fkbp52 co-chaperone inhibitor for castration resistant prostate cancer
Background: GMC1 (2-(1H-benzimidazol-2-ylsulfanyl)-N-[(Z)-(4-methoxyphenyl) methylideneamino] acetamide) effectively inhibits androgen receptor function by binding directly to FKBP52. This is a novel mechanism for the treatment of castration resistant prostate cancer (CRPC). Methods: an LC-MS/MS method was developed and validated to quantify GMC1 in plasma and urine from pharmacokinetics studies in rats. An ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters XTerra MS C18 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and methanol. A Sciex 4000 QTRAP® mass spectrometer was used for analysis by multiple reaction monitoring (MRM) in positive mode; the specific ions [M+H]+ m/z 340.995 → m/z 191.000 and [M+H]+ m/z 266.013 → m/z 234.000 were monitored for GMC1 and internal standard (albendazole), respectively. Results: GMC1 and albendazole had retention times of 1.68 and 1.66 min, respectively. The calibration curves for the determination of GMC1 in rat plasma and urine were linear from 1–1000 ng/mL. The LC-MS/MS method was validated with intra-and inter-day accuracy and precision within the 15% acceptance limit. The extraction recovery values of GMC1 from rat plasma and urine were greater than 95.0 ± 2.1% and 97.6 ± 4.6%, respectively, with no significant interfering matrix effect. GMC1 is stable under expected sample handling, storage, preparation and LC-MS/MS analysis conditions. Conclusions: Pharmacokinetic evaluation of GMC1 revealed that the molecule has a biexponential disposition in rats, is distributed rapidly and extensively, has a long elimination half-life, and appears to be eliminated primarily by first order kinetics
The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling
FKBP52 and β-catenin have emerged in recent years as attractive targets for prostate cancer treatment. β-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgendependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that β-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and β-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes β-catenin interaction with AR and is required for β-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks β-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and β-catenin. Our data suggest that co-regulation of AR by FKBP52 and β-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synerg
Identification and characterization of small molecules targeting FKBP52 as a novel treatment for prostate cancer
Prostate cancer (PCa) is one of the most commonly diagnosed diseases and the second leading cause of cancer deaths among men worldwide. Its growth is dependent upon androgen receptor (AR) signaling and the mainstay for treatment is hormone-ablation therapy using antiandrogens and/or androgen-deprivation therapies (ADT). Treatment of PCa with antiandrogens and/or ADT are initially effective; they act to repress the AR by directly competing with androgens for the ligand binding domain (LBD) and prevent activation of the receptor resulting in tumor regression. Unfortunately, the resistance to these treatments invariably emerges and results in a much more aggressive form of tumor that is androgen-independent termed castration-resistant prostate cancer (CRPC). Given the AR signaling axis is still active in CRPC and the heat shock protein (Hsp) 90-associated co-chaperone 52-kDa FK506-binding protein (FKBP52) plays important positive regulatory roles in AR, glucocorticoid receptor (GR), and progesterone receptor (PR) functions, FKBP52 represents a promising therapeutic candidate for treating PCa. Structure-based in silico drug screens of a virtual compound library representing lead-like molecules identified a list of 40 molecules that are predicted to bind to FKBP52. Functional screens of these hit compounds identified a lead molecule, termed GMC1, that inhibits FKBP52-enahnced AR, GR, and PR function, and impairs AR-mediated activation of PSA promoter activity. Additionally, our data show that GMC1 reduces endogenous androgen-dependent AR-regulated gene expression and PSA secretion. Finally, GMC1 impedes androgen-stimulated prostate cancer cell proliferation through destabilization of AR resulting in disruption of the hormone-binding ability of the receptor-HsP90-FKBP52 complex. Preclinical evaluations of GMC1 were performed by administering co-solvent GMC1 formulation via intratumoral injection into human xenograft mouse model. The data demonstrate promising potential in treating CRPC; tumor volumes are significant reduced compare to vehicle-treated controls. This proof-of-principle data in whole animal model further establishes FKBP52 PPIase-targeting drugs as effective therapies for PCa and warrant further preclinical development. Together, these findings demonstrate that FKBP52 is a viable target for PCa treatment and will lead to the development of more potent and effective drugs for the treatment of CRPC. Given GMC1’s unique mechanism of action, GMC1 is likely to circumvent AR-based therapy-induced resistance mechanisms, thereby filling a major unmet need in prostate cancer therapy
Bioanalytical assay development and validation for the pharmacokinetic study of gmc1, a novel fkbp52 co-chaperone inhibitor for castration resistant prostate cancer
Background: GMC1 (2-(1H-benzimidazol-2-ylsulfanyl)-N-[(Z)-(4-methoxyphenyl) methylideneamino] acetamide) effectively inhibits androgen receptor function by binding directly to FKBP52. This is a novel mechanism for the treatment of castration resistant prostate cancer (CRPC). Methods: an LC-MS/MS method was developed and validated to quantify GMC1 in plasma and urine from pharmacokinetics studies in rats. An ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters XTerra MS C18 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and methanol. A Sciex 4000 QTRAP® mass spectrometer was used for analysis by multiple reaction monitoring (MRM) in positive mode; the specific ions [M+H]+ m/z 340.995 → m/z 191.000 and [M+H]+ m/z 266.013 → m/z 234.000 were monitored for GMC1 and internal standard (albendazole), respectively. Results: GMC1 and albendazole had retention times of 1.68 and 1.66 min, respectively. The calibration curves for the determination of GMC1 in rat plasma and urine were linear from 1–1000 ng/mL. The LC-MS/MS method was validated with intra-and inter-day accuracy and precision within the 15% acceptance limit. The extraction recovery values of GMC1 from rat plasma and urine were greater than 95.0 ± 2.1% and 97.6 ± 4.6%, respectively, with no significant interfering matrix effect. GMC1 is stable under expected sample handling, storage, preparation and LC-MS/MS analysis conditions. Conclusions: Pharmacokinetic evaluation of GMC1 revealed that the molecule has a biexponential disposition in rats, is distributed rapidly and extensively, has a long elimination half-life, and appears to be eliminated primarily by first order kinetics
Bioanalytical Assay Development and Validation for the Pharmacokinetic Study of GMC1, a Novel FKBP52 Co-chaperone Inhibitor for Castration Resistant Prostate Cancer
Background: GMC1 (2-(1H-benzimidazol-2-ylsulfanyl)-N-[(Z)-(4-methoxyphenyl) methylideneamino] acetamide) effectively inhibits androgen receptor function by binding directly to FKBP52. This is a novel mechanism for the treatment of castration resistant prostate cancer (CRPC). Methods: an LC-MS/MS method was developed and validated to quantify GMC1 in plasma and urine from pharmacokinetics studies in rats. An ultra-high-performance liquid chromatography (UHPLC) system equipped with a Waters XTerra MS C18 column was used for chromatographic separation by gradient elution with 0.1% (v/v) formic acid in water and methanol. A Sciex 4000 QTRAP® mass spectrometer was used for analysis by multiple reaction monitoring (MRM) in positive mode; the specific ions [M+H]+m/z 340.995 → m/z 191.000 and [M+H]+ m/z 266.013 → m/z 234.000 were monitored for GMC1 and internal standard (albendazole), respectively. Results: GMC1 and albendazole had retention times of 1.68 and 1.66 min, respectively. The calibration curves for the determination of GMC1 in rat plasma and urine were linear from 1–1000 ng/mL. The LC-MS/MS method was validated with intra- and inter-day accuracy and precision within the 15% acceptance limit. The extraction recovery values of GMC1 from rat plasma and urine were greater than 95.0 ± 2.1% and 97.6 ± 4.6%, respectively, with no significant interfering matrix effect. GMC1 is stable under expected sample handling, storage, preparation and LC-MS/MS analysis conditions. Conclusions: Pharmacokinetic evaluation of GMC1 revealed that the molecule has a biexponential disposition in rats, is distributed rapidly and extensively, has a long elimination half-life, and appears to be eliminated primarily by first order kinetics.Other UBCReviewedResearche
The FKBP52 Cochaperone Acts in Synergy with β-Catenin to Potentiate Androgen Receptor Signaling.
FKBP52 and β-catenin have emerged in recent years as attractive targets for prostate cancer treatment. β-catenin interacts directly with the androgen receptor (AR) and has been characterized as a co-activator of AR-mediated transcription. FKBP52 is a positive regulator of AR in cellular and whole animal models and is required for the development of androgen-dependent tissues. We previously characterized an AR inhibitor termed MJC13 that putatively targets the AR BF3 surface to specifically inhibit FKBP52-regulated AR signaling. Predictive modeling suggests that β-catenin interacts with the AR hormone binding domain on a surface that overlaps with BF3. Here we demonstrate that FKBP52 and β-catenin interact directly in vitro and act in concert to promote a synergistic up-regulation of both hormone-independent and -dependent AR signaling. Our data demonstrate that FKBP52 promotes β-catenin interaction with AR and is required for β-catenin co-activation of AR activity in prostate cancer cells. MJC13 effectively blocks β-catenin interaction with the AR LBD and the synergistic up-regulation of AR by FKBP52 and β-catenin. Our data suggest that co-regulation of AR by FKBP52 and β-catenin does not require FKBP52 PPIase catalytic activity, nor FKBP52 binding to Hsp90. However, the FKBP52 proline-rich loop that overhangs the PPIase pocket is critical for synergy
Recommended from our members
Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone
Hsp90 plays an important role in health and is a therapeutic target for managing misfolding disease. Compounds that disrupt co-chaperone delivery of clients to Hsp90 target a subset of Hsp90 activities, thereby minimizing the toxicity of pan-Hsp90 inhibitors. Here, we have identified SEW04784 as a first-in-class inhibitor of the Aha1-stimulated Hsp90 ATPase activity without inhibiting basal Hsp90 ATPase. Nuclear magnetic resonance analysis reveals that SEW84 binds to the C-terminal domain of Aha1 to weaken its asymmetric binding to Hsp90. Consistent with this observation, SEW84 blocks Aha1-dependent Hsp90 chaperoning activities, including the in vitro and in vivo refolding of firefly luciferase, and the transcriptional activity of the androgen receptor in cell-based models of prostate cancer and promotes the clearance of phosphorylated tau in cellular and tissue models of neurodegenerative tauopathy. We propose that SEW84 provides a novel lead scaffold for developing therapeutic approaches to treat proteostatic disease
FKBP52 is Specifically Required for β-Catenin Potentiation of AR Activity.
<p>(A) AR-mediated luciferase assay in 52KO MEFs in the presence of the indicated transiently transfected expression plasmids with (Black bars) or without (grey bars) dihydrotestosterone (DHT). The asterisks denote a statistically significant difference (***p < 0.001; ****p < 0.0001) as compared to vector alone for each hormone condition. Hormone-dependent receptor activity in the presence FKBP52 and β-catenin also significantly differed as compared to activity in the presence of FKBP52 and β-catenin (S33A) (p < 0.001). The activity in the presence of FKBP52 and wild type or mutant β-catenin was also significantly higher in the presence of hormone than in the absence (p < 0.0001). All other conditions did not significantly differ from the vector alone control, or from each other for each hormone condition. (B) DHT-dependent activity of a Gal4-mediated luciferase reporter in the presence or absence of a Gal4-AR LBD fusion, β-catenin (S33Y) and/or FKBP52 was assessed in HeLa cells. The asterisks denote a statistically significant difference (**p < 0.01; ***p < 0.001) as compared to Gal4-AR LBD alone in the presence of DHT. Hormone-dependent Gal4-AR LBD activity in the presence of both β-catenin (S33Y) and FKBP52 was also significantly (p < 0.001) potentiated as compared to activity in the presence of either β-catenin (S33Y) or FKBP52 alone. (C) The same as in (B), except that transient, siRNA-mediated FKBP52 knockdown was assessed instead of overexpression. The asterisks denote a statistically significant difference (***p < 0.001) as compared to Gal4-AR LBD alone in the presence of DHT. Hormone-dependent Gal4-AR LBD activity in the presence of both β-catenin (S33Y) and Si-FKBP52 was also significantly (p < 0.001) reduced as comparecd to activity in the presence of β-catenin (S33Y) alone. (D) As a control for AR specificity, β-catenin (S33Y) potentiation of TCF4-mediated luciferase activity in HeLa cells was assessed in the presence or absence of FKBP52 overexpression. The asterisks denote a statistically significant (***p < 0.001) potentiation of TCF4-mediated luciferase activity as compared to all other conditions in the absence of β-catenin (S33Y). TCF4-mediated luciferase activity in the presence of β-catenin (S33Y) was not statistically (p > 0.05) different in the presence or absence of FKBP52.</p