125 research outputs found

    Методичні підходи до оцінки ефективності функціонування ринку праці в аграрному секторі економіки

    Get PDF
    Ціль статті - визначити методичні підходи до оцінки ефективності функціонування ринку праці в аграрному секторі економіки на сучасному етапі

    Relation of prenatal and postnatal PM<sub>2.5</sub> exposure with cognitive and motor function among preschool-aged children

    Get PDF
    The literature informing susceptible periods of exposure on children's neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children's cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children's Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 μg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative β (βcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1–9 (βcum = −2.55, 95%CrI = −3.53,-1.56) and on gross motor scores in weeks 7–17 (βcum = −2.27,95%CrI = −3.43,-1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (βcum = −0.17, 95%CrI = −0.26,-0.09). In the postnatal period (from age 0.5–1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (β = −2.42, 95%CrI = −3.37,-1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children's motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children's perceptual-performance.</p

    Relation of prenatal and postnatal PM<sub>2.5</sub> exposure with cognitive and motor function among preschool-aged children

    Get PDF
    The literature informing susceptible periods of exposure on children's neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children's cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children's Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 μg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative β (βcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1–9 (βcum = −2.55, 95%CrI = −3.53,-1.56) and on gross motor scores in weeks 7–17 (βcum = −2.27,95%CrI = −3.43,-1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (βcum = −0.17, 95%CrI = −0.26,-0.09). In the postnatal period (from age 0.5–1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (β = −2.42, 95%CrI = −3.37,-1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children's motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children's perceptual-performance.</p

    DNA Methylation at Birth and Fine Motor Ability in Childhood:An Epigenome-wide Association Study with Replication

    Get PDF
    Lower fine motor performance in childhood has been associated with poorer cognitive development and neurodevelopmental conditions such as autism spectrum disorder, yet, biological underpinnings remain unclear. DNA methylation (DNAm), an essential process for healthy neurodevelopment, is a key molecular system of interest. In this study, we conducted the first epigenome-wide association study of neonatal DNAm with childhood fine motor ability and further examined the replicability of epigenetic markers in an independent cohort. The discovery study was embedded in Generation R, a large population-based prospective cohort, including a subsample of 924 ~ 1026 European-ancestry singletons with available data on DNAm in cord blood and fine motor ability at a mean (SD) age of 9.8 (0.4) years. Fine motor ability was measured using a finger-tapping test (3 subtests including left-, right-hand and bimanual), one of the most frequently used neuropsychological instruments of fine motor function. The replication study comprised 326 children with a mean (SD) age of 6.8 (0.4) years from an independent cohort, the INfancia Medio Ambiente (INMA) study. Four CpG sites at birth were prospectively associated with childhood fine motor ability after genome-wide correction. Of these, one CpG (cg07783800 in GNG4) was replicated in INMA, showing that lower levels of methylation at this site were associated with lower fine motor performance in both cohorts. GNG4 is highly expressed in the brain and has been implicated in cognitive decline. Our findings support a prospective, reproducible association between DNAm at birth and fine motor ability in childhood, pointing to GNG4 methylation at birth as a potential biomarker of fine motor ability.The EWAS data was funded by a grant from the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA; project nr. 050-060-810), funds from the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, and a grant from the National Institute of Child and Human Development (R01HD068437). HT was supported by a grant of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO grant No. 024.001.003, Consortium on Individual Development). FS was supported by a Royal Netherlands Academy of Science and Art (KNAW) Van Leersum fellowship. ML is supported by the scholarship from the China Scholarship Council (201706990036). CC is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme under grant agreements No 101039672 (TEMPO) and No 848158 (EarlyCause). This project received funding from the European Union’s Horizon 2020 research and innovation programme (733206, LifeCycle).The epigenetic studies in INMA were mainly funded by grants from Instituto de Salud Carlos III (Red INMA G03/176, CB06/02/0041, CP18/00018), Spanish Ministry of Health (FIS-PI04/1436, FIS-PI08/1151 including FEDER funds, FIS-PI11/00610, FIS-FEDER-PI06/0867, FIS-FEDER-PI03-1615) Generalitat de Catalunya-CIRIT 1999SGR 00241, Fundació La marató de TV3 (090430), EU Commission (261357-MeDALL: Mechanisms of the Development of ALLergy), and European Research Council (268479-BREATHE: BRain dEvelopment and Air polluTion ultrafine particles in scHool childrEn)
    corecore