1,691 research outputs found
Hamiltonian Frenet-Serret dynamics
The Hamiltonian formulation of the dynamics of a relativistic particle
described by a higher-derivative action that depends both on the first and the
second Frenet-Serret curvatures is considered from a geometrical perspective.
We demonstrate how reparametrization covariant dynamical variables and their
projections onto the Frenet-Serret frame can be exploited to provide not only a
significant simplification of but also novel insights into the canonical
analysis. The constraint algebra and the Hamiltonian equations of motion are
written down and a geometrical interpretation is provided for the canonical
variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class.
Quant. Gra
Axially symmetric membranes with polar tethers
Axially symmetric equilibrium configurations of the conformally invariant
Willmore energy are shown to satisfy an equation that is two orders lower in
derivatives of the embedding functions than the equilibrium shape equation, not
one as would be expected on the basis of axial symmetry. Modulo a translation
along the axis, this equation involves a single free parameter c.If c\ne 0, a
geometry with spherical topology will possess curvature singularities at its
poles. The physical origin of the singularity is identified by examining the
Noether charge associated with the translational invariance of the energy; it
is consistent with an external axial force acting at the poles. A one-parameter
family of exact solutions displaying a discocyte to stomatocyte transition is
described.Comment: 13 pages, extended and revised version of Non-local sine-Gordon
equation for the shape of axi-symmetric membrane
Deformations of extended objects with edges
We present a manifestly gauge covariant description of fluctuations of a
relativistic extended object described by the Dirac-Nambu-Goto action with
Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas
physical fluctuations of the bulk lie normal to its worldsheet, those on the
edge possess an additional component directed into the bulk. These fluctuations
couple in a non-trivial way involving the underlying geometrical structures
associated with the worldsheet of the object and of its edge. We illustrate the
formalism using as an example a string with massive point particles attached to
its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5
Covariant perturbations of domain walls in curved spacetime
A manifestly covariant equation is derived to describe the perturbations in a
domain wall on a given background spacetime. This generalizes recent work on
domain walls in Minkowski space and introduces a framework for examining the
stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
Open strings with topologically inspired boundary conditions
We consider an open string described by an action of the Dirac-Nambu-Goto
type with topological corrections which affect the boundary conditions but not
the equations of motion. The most general addition of this kind is a sum of the
Gauss-Bonnet action and the first Chern number (when the background spacetime
dimension is four) of the normal bundle to the string worldsheet. We examine
the modification introduced by such terms in the boundary conditions at the
ends of the string.Comment: 12 pages, late
Hamilton's equations for a fluid membrane: axial symmetry
Consider a homogenous fluid membrane, or vesicle, described by the
Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is
axially symmetric, this energy can be viewed as an `action' describing the
motion of a particle; the contours of equilibrium geometries are identified
with particle trajectories. A novel Hamiltonian formulation of the problem is
presented which exhibits the following two features: {\it (i)} the second
derivatives appearing in the action through the mean curvature are accommodated
in a natural phase space; {\it (ii)} the intrinsic freedom associated with the
choice of evolution parameter along the contour is preserved. As a result, the
phase space involves momenta conjugate not only to the particle position but
also to its velocity, and there are constraints on the phase space variables.
This formulation provides the groundwork for a field theoretical generalization
to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page
A New Anomaly-Free Gauged Supergravity in Six Dimensions
We present a new anomaly-free gauged N=1 supergravity model in six
dimensions. The gauge group is E_7xG_2xU(1)_R, with all hyperinos transforming
in the product representation {56,14). The theory admits monopole
compactifications to R^4xS^2, leading to D=4 effective theories with broken
supersymmetry and massless fermions.Comment: 9 pages, RevTeX
Force dipoles and stable local defects on fluid vesicles
An exact description is provided of an almost spherical fluid vesicle with a
fixed area and a fixed enclosed volume locally deformed by external normal
forces bringing two nearby points on the surface together symmetrically. The
conformal invariance of the two-dimensional bending energy is used to identify
the distribution of energy as well as the stress established in the vesicle.
While these states are local minima of the energy, this energy is degenerate;
there is a zero mode in the energy fluctuation spectrum, associated with area
and volume preserving conformal transformations, which breaks the symmetry
between the two points. The volume constraint fixes the distance , measured
along the surface, between the two points; if it is relaxed, a second zero mode
appears, reflecting the independence of the energy on ; in the absence of
this constraint a pathway opens for the membrane to slip out of the defect.
Logarithmic curvature singularities in the surface geometry at the points of
contact signal the presence of external forces. The magnitude of these forces
varies inversely with and so diverges as the points merge; the
corresponding torques vanish in these defects. The geometry behaves near each
of the singularities as a biharmonic monopole, in the region between them as a
surface of constant mean curvature, and in distant regions as a biharmonic
quadrupole. Comparison of the distribution of stress with the quadratic
approximation in the height functions points to shortcomings of the latter
representation. Radial tension is accompanied by lateral compression, both near
the singularities and far away, with a crossover from tension to compression
occurring in the region between them.Comment: 26 pages, 10 figure
Helfrich-Canham bending energy as a constrained non-linear sigma model
The Helfrich-Canham bending energy is identified with a non-linear sigma
model for a unit vector. The identification, however, is dependent on one
additional constraint: that the unit vector be constrained to lie orthogonal to
the surface. The presence of this constraint adds a source to the divergence of
the stress tensor for this vector so that it is not conserved. The stress
tensor which is conserved is identified and its conservation shown to reproduce
the correct shape equation.Comment: 5 page
Chern-Simons theory and three-dimensional surfaces
There are two natural Chern-Simons theories associated with the embedding of
a three-dimensional surface in Euclidean space; one is constructed using the
induced metric connection -- it involves only the intrinsic geometry, the other
is extrinsic and uses the connection associated with the gauging of normal
rotations. As such, the two theories appear to describe very different aspects
of the surface geometry. Remarkably, at a classical level, they are equivalent.
In particular, it will be shown that their stress tensors differ only by a null
contribution. Their Euler-Lagrange equations provide identical constraints on
the normal curvature. A new identity for the Cotton tensor is associated with
the triviality of the Chern-Simons theory for embedded hypersurfaces implied by
this equivalence. The corresponding null surface stress capturing this
information will be constructed explicitly.Comment: 10 pages, unnecessary details removed, typos fixed, references adde
- …