3,494 research outputs found

    Judicial Incoherence, Capital Punishment, and the Legalization of Torture

    Get PDF
    This brief essay responds to the Supreme Court’s recent decision in Bucklew v. Precythe. It contends that the argument relied upon by the Court in that decision, as well as in Glossip v. Gross, is either trivial or demonstrably invalid. Hence, this essay provides a nonmoral reason to oppose the Court’s recent capital punishment decisions. The Court’s position that petitioners seeking to challenge a method of execution must identify a readily available and feasible alternative execution protocol is untenable, and must be revisited

    Bhaskar Contra Kant

    Get PDF

    Regularity lemmas in a Banach space setting

    Full text link
    Szemer\'edi's regularity lemma is a fundamental tool in extremal graph theory, theoretical computer science and combinatorial number theory. Lov\'asz and Szegedy [L. Lov\'asz and B. Szegedy: Szemer\'edi's Lemma for the analyst, Geometric and Functional Analysis 17 (2007), 252-270] gave a Hilbert space interpretation of the lemma and an interpretation in terms of compact- ness of the space of graph limits. In this paper we prove several compactness results in a Banach space setting, generalising results of Lov\'asz and Szegedy as well as a result of Borgs, Chayes, Cohn and Zhao [C. Borgs, J.T. Chayes, H. Cohn and Y. Zhao: An Lp theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, arXiv preprint arXiv:1401.2906 (2014)].Comment: 15 pages. The topological part has been substantially improved based on referees comments. To appear in European Journal of Combinatoric

    Asymptotic independence for unimodal densities

    Full text link
    Asymptotic independence of the components of random vectors is a concept used in many applications. The standard criteria for checking asymptotic independence are given in terms of distribution functions (dfs). Dfs are rarely available in an explicit form, especially in the multivariate case. Often we are given the form of the density or, via the shape of the data clouds, one can obtain a good geometric image of the asymptotic shape of the level sets of the density. This paper establishes a simple sufficient condition for asymptotic independence for light-tailed densities in terms of this asymptotic shape. This condition extends Sibuya's classic result on asymptotic independence for Gaussian densities.Comment: 33 pages, 4 figure

    Weighted counting of solutions to sparse systems of equations

    Full text link
    Given complex numbers w1,,wnw_1, \ldots, w_n, we define the weight w(X)w(X) of a set XX of 0-1 vectors as the sum of w1x1wnxnw_1^{x_1} \cdots w_n^{x_n} over all vectors (x1,,xn)(x_1, \ldots, x_n) in XX. We present an algorithm, which for a set XX defined by a system of homogeneous linear equations with at most rr variables per equation and at most cc equations per variable, computes w(X)w(X) within relative error ϵ>0\epsilon >0 in (rc)O(lnnlnϵ)(rc)^{O(\ln n-\ln \epsilon)} time provided wjβ(rc)1|w_j| \leq \beta (r \sqrt{c})^{-1} for an absolute constant β>0\beta >0 and all j=1,,nj=1, \ldots, n. A similar algorithm is constructed for computing the weight of a linear code over Fp{\Bbb F}_p. Applications include counting weighted perfect matchings in hypergraphs, counting weighted graph homomorphisms, computing weight enumerators of linear codes with sparse code generating matrices, and computing the partition functions of the ferromagnetic Potts model at low temperatures and of the hard-core model at high fugacity on biregular bipartite graphs.Comment: The exposition is improved, a couple of inaccuracies correcte

    A robust scheme for free surface and pressurized flows in channels with arbitrary cross-sections

    Get PDF
    Flows in closed channels, such as rain storm sewers, often contain transitions from free surface flows to pressurized flows, or viceversa. These phenomena usually require two different sets of equations to model the two different flow regimes. Actually, a few specifications for the geometry of the channel and for the discretization choices can be sufficient to model closed channel flows using only the open channel flow equations. Transitions can also occur in open channels, like those from super- to subcritical flow, or vice versa. These particular flows are usually difficult to reproduce numerically and strong restrictions are imposed on the numerical scheme to simulate them. In this paper, an implicit finite-difference conservative algorithm is proposed to deal properly with these problems. In addition, a special flux limiter is described and implemented to allow accurate flow simulations near hydraulic structures such as weirs. A few computational examples are given to illustrate the properties of the scheme and the numerical solutions are compared with experimental data, when possible

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if pCp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio
    corecore