1,778 research outputs found
Enumeration of self avoiding trails on a square lattice using a transfer matrix technique
We describe a new algebraic technique, utilising transfer matrices, for
enumerating self-avoiding lattice trails on the square lattice. We have
enumerated trails to 31 steps, and find increased evidence that trails are in
the self-avoiding walk universality class. Assuming that trails behave like , we find and .Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe
On the growth rate of 1324-avoiding permutations
We give an improved algorithm for counting the number of -avoiding
permutations, resulting in 5 further terms of the generating function. We
analyse the known coefficients and find compelling evidence that unlike other
classical length-4 pattern-avoiding permutations, the generating function in
this case does not have an algebraic singularity. Rather, the number of
1324-avoiding permutations of length behaves as We estimate
and Comment: 20 pages, 10 figure
On consecutive pattern-avoiding permutations of length 4, 5 and beyond
We review and extend what is known about the generating functions for
consecutive pattern-avoiding permutations of length 4, 5 and beyond, and their
asymptotic behaviour. There are respectively, seven length-4 and twenty-five
length-5 consecutive-Wilf classes. D-finite differential equations are known
for the reciprocal of the exponential generating functions for four of the
length-4 and eight of the length-5 classes. We give the solutions of some of
these ODEs. An unsolved functional equation is known for one more class of
length-4, length-5 and beyond. We give the solution of this functional
equation, and use it to show that the solution is not D-finite. For three
further length-5 c-Wilf classes we give recurrences for two and a
differential-functional equation for a third. For a fourth class we find a new
algebraic solution. We give a polynomial-time algorithm to generate the
coefficients of the generating functions which is faster than existing
algorithms, and use this to (a) calculate the asymptotics for all classes of
length 4 and length 5 to significantly greater precision than previously, and
(b) use these extended series to search, unsuccessfully, for D-finite solutions
for the unsolved classes, leading us to conjecture that the solutions are not
D-finite. We have also searched, unsuccessfully, for differentially algebraic
solutions.Comment: 23 pages, 2 figures (update of references, plus web link to
enumeration data). Minor update. Typos corrected. One additional referenc
Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'
Earlier this year Chan extended the low-density series for the hard-squares
partition function to 92 terms. Here we analyse this extended
series focusing on the behaviour at the dominant singularity which lies
on on the negative fugacity axis. We find that the series has a confluent
singularity of order 2 at with exponents and
. We thus confirm that the exponent has the exact
value as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio
The Enumeration of Prudent Polygons by Area and its Unusual Asymptotics
Prudent walks are special self-avoiding walks that never take a step towards
an already occupied site, and \emph{-sided prudent walks} (with )
are, in essence, only allowed to grow along directions. Prudent polygons
are prudent walks that return to a point adjacent to their starting point.
Prudent walks and polygons have been previously enumerated by length and
perimeter (Bousquet-M\'elou, Schwerdtfeger; 2010). We consider the enumeration
of \emph{prudent polygons} by \emph{area}. For the 3-sided variety, we find
that the generating function is expressed in terms of a -hypergeometric
function, with an accumulation of poles towards the dominant singularity. This
expression reveals an unusual asymptotic structure of the number of polygons of
area , where the critical exponent is the transcendental number
and and the amplitude involves tiny oscillations. Based on numerical data, we
also expect similar phenomena to occur for 4-sided polygons. The asymptotic
methodology involves an original combination of Mellin transform techniques and
singularity analysis, which is of potential interest in a number of other
asymptotic enumeration problems.Comment: 27 pages, 6 figure
A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods
for exact enumerations of lattice objects. The new method is illustrated by an
application to the enumeration of self-avoiding polygons on the square lattice.
A detailed comparison with the previous best algorithm shows significant
improvement in the running time of the algorithm. The new algorithm is used to
extend the enumeration of polygons to length 130 from the previous record of
110.Comment: 17 pages, 8 figures, IoP style file
- …