6 research outputs found

    Genetic engineering to improve quality, productivity and value of crops

    No full text
    Over the next 25 years, we believe that the most significant changes in crops will come about by applying genetic engineering tools. Crops may be bioengineered to produce modified kinds of starch, oils and high-value proteins for better nutrition, medical diagnostics and industrial uses. For example, walnuts and peanuts containing healthier oils, along with oxidative stability, could become available to consumers. Seedless vegetables and other fruits should appear in the marketplace within 10 years. Oil-producing seed crops may be modified to create specialty oils for a variety of nonfood products such as detergents, lubricants, inks and dyes. Feed seeds engineered to produce higher concentrations of sulfur-containing amino acids could improve wool growth in sheep. Plants could be modified to deliver oral vaccines that prevent diseases such as hepatitis and influenza. Strawberries are being targeted by genetic engineering to extend their shelf life, and within 25 years fields may be planted with varieties that allow farmers to control the timing of fruit production. Although currently controversial, we believe genetic engineering will prove to be invaluable to the future improvement of agricultural systems. To enhance the competitiveness of California agriculture, government, university scientists and industry must work together to ensure the application of genetic engineering tools to improve crops

    Crop Improvement for Circular Bioeconomy Systems

    No full text
    Contemporary agricultural systems are poised to transition from linear to circular, adopting concepts of recycling, repurposing, and regeneration. This transition will require changing crop improvement objectives to consider the entire system, and thus provide solutions to improve complex systems for higher productivity, resource use efficiency, and environmental quality. The methods and approaches that underpinned the doubling of yields during the last century may no longer be fully adequate to target crop improvement for circular agricultural systems. Here we propose a multidimensional framework for prediction with outcomes useful to assess both crop performance traits and environmental sustainability of the designed agricultural systems. The study focuses on maize harvestable grain yield and total carbon production, water use, and use efficiency for yield and carbon. The framework builds on the crop growth model whole genome prediction system, which is enabled by advanced phenomics and the integration of symbolic and sub-symbolic artificial intelligence. We demonstrate the approach and prediction accuracy advantages over a standard statistical genomic prediction approach used to breed maize hybrids for yield, flowering time, and kernel set using a dataset comprised of 7004 hybrids, 103 breeding populations, and 62 environments resulting from six years of experimentation in maize drought breeding in the U.S. We propose this framework to motivate a dialogue for how to enable circularity in agriculture through prediction-based systems design

    Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus

    No full text
    Xylans are the major hemicelluloses in grasses, but their effects on biomass saccharification remain unclear. In this study, we examined the 79 representative Miscanthus accessions that displayed a diverse cell wall composition and varied biomass digestibility. Correlation analysis showed that hemicelluloses level has a strong positive effect on lignocellulose enzymatic digestion after NaOH or H2SO4 pretreatment. Characterization of the monosaccharide compositions in the KOH-extractable and non-KOH-extractable hemicelluloses indicated that arabinose substitution degree of xylan is the key factor that positively affects biomass saccharification. The xylose/arabinose ratio after individual enzyme digestion revealed that the arabinose in xylan is partially associated with cellulose in the amorphous regions, which negatively affects cellulose crystallinity for high biomass digestibility. The results provide insights into the mechanism of lignocellulose enzymatic digestion upon pretreatment, and also suggest a goal for the genetic modification of hemicelluloses towards the bioenergy crop breeding of Miscanthus and grasses. (C) 2012 Elsevier Ltd. All rights reserved
    corecore