3,224 research outputs found
Real-time dynamics of clusters. III. I_2Ne_n (n=2–4), picosecond fragmentation, and evaporation
In this paper (III) we report real-time studies of the picosecond dynamics of iodine in Ne clusters I*2Nen(n = 2–4) --> I*2 + nNe. The results are discussed in relation to vibrational predissociation (VP), basic to the I2X systems, and to the onset of intramolecular vibrational-energy redistribution (IVR). The latter process, which is a precursor for the evaporation of the host atoms or for further fragmentation, is found to be increasingly effective as the cluster size increases; low-energy van der Waals modes act as the accepting (bath) modes. The reaction dynamics for I2Ne2 are examined and quantitatively compared to a simple model which describes the dynamics as consecutive bond breaking. On this basis, it is concluded that the onset of energy redistribution is observed in I2Ne2. Comparison of I2Ne and I2Ne2 to larger clusters (n=3,4) is accomplished by introducing an overall effective reaction rate. From measurements of the rates and their dependence on v[script ']i, the initial quantum number of the I2 stretch, we are able to examine the dynamics of direct fragmentation and evaporation, and compare with theory
Real-time dynamics of clusters. II. I_2X_n (n=1; X=He, Ne, and H_2), picosecond fragmentation
In this second paper (II) of a series, we report our picosecond time-resolved studies of the state-to-state rates of vibrational predissociation in iodine–rare gas (van der Waals) clusters. Particular focus is on the simplest system, I2He, which serves as a benchmark for theoretical modeling. Comparisons with I2Ne and I2H2 are also presented. The results from measurements made in real time are compared with those deduced from linewidth measurements, representing a rare example of a system studied by both methods under identical conditions and excited to the same quantum (v[script ']i) states. The discrepancies are discussed in relation to the origin of the broadening and preparation of the state. The rates as a function of v[script ']i display a nonlinear behavior which is examined in relation to the energy-gap law. The measured absolute rates and their dependence on v[script ']i are compared with numerous calculations invoking classical, quantum, and semiclassical theories. In the following paper (III in this series), the cluster size of the same system, I2Xn, is increased (n=2–4) and the dynamics are studied
Direct observation of the picosecond dynamics of I_2-Ar fragmentation
Picosecond real‐time observations of the dynamics of I_2–Ar fragmentation are reported. The state‐to‐state rates, k(ν^i,,ν^f,), are directly measured and related to the homogeneous broadening of the initial state, and to product state distributions in the exit channel. Comparisons with different theories of vibrational (and electronic) predissociation are made
Commensurate to incommensurate magnetic phase transition in Honeycomb-lattice pyrovanadate Mn2V2O7
We have synthesized single crystalline sample of MnVO using
floating zone technique and investigated the ground state using magnetic
susceptibility, heat capacity and neutron diffraction. Our magnetic
susceptibility and heat capacity reveal two successive magnetic transitions at
19 K and 11.8 K indicating two distinct magnetically
ordered phases. The single crystal neutron diffraction study shows that in the
temperature () range 11.8 K 19 K the magnetic structure is
commensurate with propagation vector , while upon lowering
temperature below 11.8 K an incommensurate magnetic order emerges
with and the magnetic structure can be represented by
cycloidal modulation of the Mn spin in plane. We are reporting this
commensurate to incommensurate transition for the first time. We discuss the
role of the magnetic exchange interactions and spin-orbital coupling on the
stability of the observed magnetic phase transitions.Comment: 8 pages, 7 figure
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
A quantum system will stay near its instantaneous ground state if the
Hamiltonian that governs its evolution varies slowly enough. This quantum
adiabatic behavior is the basis of a new class of algorithms for quantum
computing. We test one such algorithm by applying it to randomly generated,
hard, instances of an NP-complete problem. For the small examples that we can
simulate, the quantum adiabatic algorithm works well, and provides evidence
that quantum computers (if large ones can be built) may be able to outperform
ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a
shorter version of this article appeared in the April 20, 2001 issue of
Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47
The new mythologies and premature aging in the youth culture
Comparative studies of aging men in a variety of preliterate traditional societies suggest that older men, across cultures, are relatively mild and uncompetitive, as compared to younger men from the same communities. Older men are more interested in receiving than in producing, more interested in communion than in agency; their sense of pleasure and security is based on food, religion, and the assurance of love. The counterculture gives priority to the same themes, and thereby seems to sponsor a premature senescence, in the psychological sense. Various contemporary myths stemming from affluence and consumerism that have led to the new geriatrics are examined, particularly the myth of the all-including, omnipotential self, which is seen as a translation of socialist, collectivist ideals into the domain of personality. The effects of the new psychic collectivism on ego development in the adolescent and postadolescent periods are also considered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45279/1/10964_2005_Article_BF02214091.pd
Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences
We consider the product of infinitely many copies of a spin-
system. We construct projection operators on the corresponding nonseparable
Hilbert space which measure whether the outcome of an infinite sequence of
measurements has any specified property. In many cases, product
states are eigenstates of the projections, and therefore the result of
measuring the property is determined. Thus we obtain a nonprobabilistic quantum
analogue to the law of large numbers, the randomness property, and all other
familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe
Derivation of the Quantum Probability Rule without the Frequency Operator
We present an alternative frequencists' proof of the quantum probability rule
which does not make use of the frequency operator, with expectation that this
can circumvent the recent criticism against the previous proofs which use it.
We also argue that avoiding the frequency operator is not only for technical
merits for doing so but is closely related to what quantum mechanics is all
about from the viewpoint of many-world interpretation.Comment: 12 page
Deconvoluting mTOR biology
In metazoans, TOR is an essential protein that functions as a master regulator of cellular growth and proliferation. Over the past decade, there has been an explosion of information about this critical master kinase, ranging from the composition of the TOR protein complex to its ability to act as an integrator of numerous extracellular signals. Unfortunately, this plethora of information has also raised numerous questions regarding TOR function. Currently, the prevailing view is that mammalian TOR (mTOR) exists in at least two molecular complexes, mTORC1 and mTORC2, which are largely defined by the presence of either RAPTOR or RICTOR. However, additional co-factors have been identified for each complex, and their importance in mediating mTOR signals has been incompletely elucidated. Similarly, there are differences in mTOR function that reflect the tissue of origin. In this review, we present an alternative view to mTOR complex formation and function, which envisions mTOR regulation and signal propagation as a reflection of cell type- and basal state-dependent conditions. The re-interpretation of mTOR biology in this framework may facilitate the design of therapies most likely to effectively inhibit this central regulator of cell behavior
- …