5 research outputs found
Resurrected ancestral proteins as scaffolds for enzyme engineering and evolution
Enzymes are extraordinary efficient natural molecular machines that catalyze chemical
reactions and transformations that sustain life in all organisms. Decades of intensive
research have led to significant advances in the study of enzymes. Researchers have
developed sophisticated methodologies and approaches to extensively study and gain
an in-depth understanding of the molecular basis of enzyme structure, dynamics,
function, and regulation. As a result, it is now possible to accurately describe the
physiochemical implications of every element involved in almost every enzyme’s active
site during the specific molecular processes that drive the catalytic reactions. Moreover,
the extensive knowledge about enzymatic catalysis has allowed us to understand how
enzymes have evolved during billions of years of natural selection to catalyze chemical
reactions with proficient efficiency, specificity and selectivity towards the chemical
transformations and their substrates. Overall, the study of enzymes has provided a
fascinating window into the molecular machinery of life. But also, it has allowed
researchers to accumulate a solid scientific knowledge base that enables to engineer
and tune the molecular architecture of enzymes towards designing efficient artificial and
modified versions of tailored enzymes for catalyzing chemical reactions of
biotechnological and biomedical interest.
However, despite our deep knowledge and advanced understanding about the
fundamentals and evolution of enzymatic catalysis, one elemental question remains
unanswered – How enzymatic catalysis firstly emerged and evolved at the origin of
proteins and enzymes? Understanding the molecular mechanisms underlying the
evolutionary emergence of new enzymatic catalysis would not only be essential to
understand the birth of enzymes and its implications in the origins of life. But also, it
would be critical to design new biotechnological approaches inspired in these molecular
mechanisms to efficiently design and generate novel enzymes to catalyze artificial
unnatural chemical reactions of interest. Yet, the study of modern enzymes with the aim
to shed some light on this fundamental question has not provided significant advances.
In this thesis, we propose the hypothesis that resurrected ancestral proteins might be
better scaffolds than their modern counterparts to study and understand the
emergence of enzymatic catalysis. Ancestral active sites and their molecular
architectures would be more useful to reveal and study the minimal requirements for
catalysis. But also, ancestral proteins might be better starting points for engineering
novel active sites to catalyze artificial unnatural chemical reactions. Advances in both
directions may help us to reveal the molecular processes that drive the emergence of
new catalysis in nature. Ancestral proteins then show the potential to have a profound
impact in our understanding about enzyme catalysis, with critical implications in our
knowledge about the origins of life and our capacity to develop new artificial enzymes.
In order to validate our hypothesis, we have performed several experiments with
different resurrected ancestral protein systems aiming to evolve a de novo artificial active site, as well as to understand how primordial levels of cofactor-dependent
catalysis are promoted in an unevolved ancestral molecular scaffold.
In the first part of the thesis, we describe the evolution of an artificial de novo active
site, previously engineered in a resurrected ancestral β-lactamase scaffold, by means of
computational and experimental low-throughput screenings. As a result, we have
demonstrated how mutations in residues directly involved in a de novo active site or
how the introduction of new additional residues in the protein sequence may improve
the geometrical preorganization of the active site and generate new interactions that
enhance the stabilization of the reaction transition state and promote low initial levels
of activity to reach an efficient enzymatic catalysis comparable to natural enzymes.
These results have direct implications in protein engineering and de novo enzyme
design. But also, it provides new insights about the evolutionary processes that may led
the early optimization of novel active sites during the emergence of enzymatic catalysis.
In the second part of the thesis, we have resurrected an ancestral glycosidase protein
with a typical TIM-barrel fold that displays unusual biochemical and biophysical features.
Mainly, our ancestral TIM-barrel shows the ability to bind a molecule of the redox
cofactor heme in a highly flexible region of the barrel architecture. Upon heme binding,
the ancestral TIM-barrel displays a general rigidification of its structure, an allosteric
modulation of its natural enzymatic activity and an unnatural novel peroxidase activity
based on the redox catalytic power of heme. As a result, the ancestral heme binding
TIM-barrel protein demonstrates the potential of resurrected proteins as scaffolds to
harbor unusual combinations of properties of evolutionary and biotechnological
interest. Additionally, the study of our redox active TIM-barrel provides new insights
about the role cofactor protection in the emergence of proteins and enzymatic catalysis
during the origin of life.
Overall, the results presented in this thesis support the hypothesis that resurrected
ancestral proteins may serve as superior scaffolds for enzyme engineering and
evolutionary studies, aimed to better understand the emergence of enzymatic catalysis
during the origin of life.Las enzimas son máquinas moleculares naturales extraordinariamente eficientes que
catalizan las reacciones y transformaciones químicas que sustentan la vida de todos los
organismos. Décadas de investigación intensiva han logrado avances significativos en el
estudio de las enzimas. Los investigadores han desarrollado metodologías y
aproximaciones sofisticadas para estudiar de manera extensiva y conseguir un
conocimiento en profundidad sobre sobre las bases moleculares de la estructura,
dinámica, función y regulación de las enzimas. Como resultado, hoy en día es posible
describir de forma precisa las implicaciones fisicoquímicas de cada elemento
involucrado en el sitio activo de prácticamente cualquier enzima durante los procesos
moleculares específicos que permiten las reacciones catalíticas. Además, el
conocimiento extensivo sobre la catálisis enzimática nos ha permitido entender cómo
las enzimas han evolucionado durante miles de millones de años de selección natural
para catalizar reacciones químicas con eficiencia, especificidad y selectividad excelentes
con respecto a las reacciones de transformación y sus sustratos. En general, el estudio
de las enzimas ha abierto una fascinante ventana a la maquinaria molecular de la vida.
Pero, además, ha permitido a los investigadores acumular una sólida base de
conocimiento científico que podemos aplicar en el diseño, modificación y optimización
de la arquitectura molecular de las enzimas con el objetivo de diseñar versiones
artificiales y modificadas de enzimas a medida para catalizar reacciones químicas de
interés biotecnológico y biomédico.
A pesar del extenso y avanzado conocimiento sobre los fundamentos y la evolución de
la catálisis enzimática, sigue habiendo una pregunta elemental sin respuesta con
respecto al estudio de las enzimas: ¿Cómo emergió y evolucionó la catálisis enzimática
por primera vez durante el origen de las proteínas y las enzimas? La capacidad de
entender los mecanismos moleculares que subyacen a la emergencia evolutiva de
nuevas capacidades catalíticas en enzimas no solo es fundamental para entender el
nacimiento de las enzimas y sus implicaciones en el origen de la vida. Además, es crítica
para diseñar nuevas aproximaciones biotecnológicas inspiradas en estos mecanismos
moleculares con el objetivo de diseñar y generar de forma eficiente nuevas enzimas para
catalizar reacciones químicas artificiales no naturales de interés. Sin embargo, el estudio
basado en enzimas modernas, encontradas en los organismos actuales, con el objetivo
de responder a esta pregunta fundamental no logrado avances significativos.
En esta tesis proponemos la hipótesis de que las proteínas ancestrales resucitadas
podrían funcionar como mejores “andamios moleculares”, en comparación con sus
homologas modernas, para estudiar y comprender la emergencia de la catálisis
enzimática. El estudio de sitios activos ancestrales y sus arquitecturas moleculares
podría ser más útil para revelar y estudiar los requerimientos mínimos necesarios para
la catálisis enzimática. Además, las proteínas ancestrales podrían ser mejores puntos de
inicio para el diseño de sitios nuevos sitios activos para catalizar reacciones químicas no
naturales artificiales. En este sentido, lograr avances en ambas direcciones tendría importantes implicaciones para entender y revelar los procesos moleculares que dirigen
la emergencia de nuevas catálisis enzimáticas en la naturaleza. Por lo tanto, las proteínas
ancestrales muestran de potencial de tener un profundo impacto en nuestra
comprensión sobre la catálisis enzimática, con implicaciones críticas en nuestro
conocimiento sobre el origen de la vida y la capacidad de desarrollar nuevas enzimas
artificiales. Para validar nuestra hipótesis, hemos realizado diferentes experimentos con
diferentes sistemas de proteínas ancestrales resucitadas con el objetivo de evolucionar
un sitio activo artificial de novo y de entender cómo niveles primordiales de catálisis
dependiente de un cofactor son mejorados en un andamio molecular ancestral sin
evolucionar.
En la primera parte de la tesis describimos la evolución de un sitio activo artificial de
novo, previamente diseñado en el andamio molecular de una β-lactamasa ancestral
mediante cribados computacionales y experimentales de bajo número. Como resultado,
hemos demostrado cómo mutaciones en residuos directamente involucrados en el sitio
activo artificial o cómo la introducción de nuevos residuos adicionales en la secuencia
de la proteína puede mejorar la preorganización geométrica del sitio activo y generar
nuevas interacciones que aumentan la estabilización del estado de transición y mejoran
los bajos niveles de actividad enzimática para llegar a una catálisis enzimática eficiente
comparable a la de enzimas naturales. Estos resultados tienen implicaciones inmediatas
en ingeniería de proteínas y el diseño de novo de enzimas. Pero, adicionalmente, aporta
nuevo conocimiento sobre los mecanismos evolutivos que pudieron dar lugar a la
optimización temprana de sitios activos nuevos durante la emergencia de la catálisis
enzimática.
En la segunda parte de esta tesis, hemos resucitado una glicosidasa ancestral que
presenta un plegamiento típico en forma de barril TIM y que muestra unas propiedades
bioquímicas y biofísicas inusuales. Principalmente, nuestro barril TIM ancestral muestra
la capacidad de unir una molécula del cofactor redox hemo en una región
excepcionalmente flexible de arquitectura del barril. La unión del hemo da lugar a un
aumento general de la rigidez de la estructura de la proteína, a una modulación
alostérica de la actividad natural de la enzima y a la generación de una actividad
peroxidasa nueva no natural basada en el poder catalítico redox intrínseco del hemo.
Como resultado, nuestra proteína ancestral con estructura de barril TIM y con la
capacidad de unir hemo demuestra el potencial de la resurrección ancestral de proteínas
como andamios que muestran combinaciones inusuales de propiedades con interés
biotecnológico. Adicionalmente, el estudio de nuestro barril TIM con actividad redox
aporta nuevos puntos de vista sobre el papel de la protección de los cofactores durante
la emergencia de las proteínas y la catálisis enzimática durante en origen de la vida.
En general, los resultados presentados en esta tesis apoyan la hipótesis de que las
proteínas ancestrales resucitadas pueden servir como mejores andamiajes moleculares
en la ingeniería y estudios evolutivos de enzimas, dirigidos a lograr un mayor
conocimiento sobre la emergencia de la catálisis enzimática durante el origen de la vida.Tesis Univ. Granada
Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme
The routine generation of enzymes with completely new active sites is a major unsolved problem in protein engineering. Advances in this field have thus far been modest, perhaps due, at least in part, to the widespread use of modern natural proteins as scaffolds for de novo engineering. Most modern proteins are highly evolved and specialized and, consequently, difficult to repurpose for completely new functionalities. Conceivably, resurrected ancestral proteins with the biophysical properties that promote evolvability, such as high stability and conformational diversity, could provide better scaffolds for de novo enzyme generation. Kemp elimination, a non-natural reaction that provides a simple model of proton abstraction from carbon, has been extensively used as a benchmark in de novo enzyme engineering. Here, we present an engineered ancestral beta-lactamase with a new active site that is capable of efficiently catalyzing Kemp elimination. The engineering of our Kemp eliminase involved minimalist design based on a single function-generating mutation, inclusion of an extra polypeptide segment at a position close to the de novo active site, and sharply focused, low-throughput library screening. Nevertheless, its catalytic parameters (k(cat)/K-M similar to 2.10(5) M-1 s(-1), k(cat)similar to 635 s(-1)) compare favorably with the average modern natural enzyme and match the best proton-abstraction de novo Kemp eliminases that are reported in the literature. The general implications of our results for de novo enzyme engineering are discussed.Human Frontier Science Program RGP0041/2017Spanish Government RTI-2018-097142-B100
EQC2019-006403-PFEDER/Junta de Andalucia-Consejeria de Economia y Conocimiento E.FQM.113.UGR1
Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems
We thank all members of the NTG laboratory for helpful
discussions during the development of this project. We acknowledge
support of the publication fee by the CSIC Open
Access Publication Support Initiative through its Unit of
Information Resources for Research (URICI).Supplementary Data are available at NAR Online: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa1149#supplementary-dataBacterial retrons consist of a reverse transcriptase (RT) and a contiguous non-coding RNA (ncRNA) gene. One third of annotated retrons carry additional open reading frames (ORFs), the contribution and significance of which in retron biology remains to be determined. In this study we developed a computational pipeline for the systematic prediction of genes specifically associated with retron RTs based on a previously reported large dataset representative of the diversity of prokaryotic RTs. We found that retrons generally comprise a tripartite system composed of the ncRNA, the RT and an additional protein or RT-fused domain with diverse enzymatic functions. These retron systems are highly modular, and their components have coevolved to different extents. Based on the additional module, we classified retrons into 13 types, some of which include additional variants. Our findings provide a basis for future studies on the biological function of retrons and for expanding their biotechnological applications.Spanish Ministerio de Ciencia, Innovacion y UniversidadesEuropean Commission
BIO2017-82244-PFPU predoctoral fellowship grant from the Ministerio de Economia y Competitividad
FPU15/02714FPU predoctoral fellowship grant from the Ministerio de Ciencia, Innovacion y Universidades
FPU17/0508
Protection of Catalytic Cofactors by Polypeptides as a Driver for the Emergence of Primordial Enzymes
Enzymes catalyze the chemical reactions of life. For nearly half of known enzymes, catalysis requires the binding of
small molecules known as cofactors. Polypeptide-cofactor complexes likely formed at a primordial stage and became
starting points for the evolution of many efficient enzymes. Yet, evolution has no foresight so the driver for the primordial
complex formation is unknown. Here, we use a resurrected ancestral TIM-barrel protein to identify one potential
driver. Heme binding at a flexible region of the ancestral structure yields a peroxidation catalyst with
enhanced efficiency when compared to free heme. This enhancement, however, does not arise from proteinmediated
promotion of catalysis. Rather, it reflects the protection of bound heme from common degradation
processes and a resulting longer lifetime and higher effective concentration for the catalyst. Protection of catalytic
cofactors by polypeptides emerges as a general mechanism to enhance catalysis and may have plausibly benefited
primordial polypeptide-cofactor associations.Human Frontier Science Program grant RGP0041/2017National Science Foundation grant 2032315Department of Defense grant MURI W911NF-16-1-0372National Institutes of Health grant R01AR069137Spanish Ministry of Science and Innovation/ FEDER Funds grant PID2021-124534OB-100Grant PID2020-116261GB-I0
Cell Survival Enabled by Leakage of a Labile Metabolic Intermediate
Many metabolites are generated in one step of a biochemical pathway and consumed in a subsequent step. Such
metabolic intermediates are often reactive molecules which, if allowed to freely diffuse in the intracellular milieu,
could lead to undesirable side reactions and even become toxic to the cell. Therefore, metabolic intermediates
are often protected as protein-bound species and directly transferred between enzyme active sites in multi-function al enzymes, multi-enzyme complexes, and metabolons. Sequestration of reactive metabolic intermediates thus con tributes to metabolic efficiency. It is not known, however, whether this evolutionary adaptation can be relaxed in
response to challenges to organismal survival. Here, we report evolutionary repair experiments on Escherichia coli
cells in which an enzyme crucial for the biosynthesis of proline has been deleted. The deletion makes cells unable
to grow in a culture medium lacking proline. Remarkably, however, cell growth is efficiently restored by many single
mutations (12 at least) in the gene of glutamine synthetase. The mutations cause the leakage to the intracellular
milieu of a highly reactive phosphorylated intermediate common to the biosynthetic pathways of glutamine and pro line. This intermediate is generally assumed to exist only as a protein-bound species. Nevertheless, its diffusion upon
mutation-induced leakage enables a new route to proline biosynthesis. Our results support that leakage of seques tered metabolic intermediates can readily occur and contribute to organismal adaptation in some scenarios.
Enhanced availability of reactive molecules may enable the generation of new biochemical pathways and the poten tial of mutation-induced leakage in metabolic engineering is notedHuman Frontier Science Program RGP0041/2017Spanish Government RTI2018-097142-B-100Ministry of Science and Innovation, Spain (MICINN) 80NSSC18K1277European CommissionJunta de AndaluciaRegional Andalusian Government E-BIO-464-UGR-20
2020_DOC_0054