3 research outputs found

    Particle Acceleration at Ultra-Relativistic Shocks and the Spectra of Relativistic Fireballs

    Full text link
    We examine Fermi-type acceleration at relativistic shocks, and distinguish between the initial boost of the first shock crossing cycle, where the energy gain per particle can be very large, and the Fermi process proper with repeated shock crossings, in which the typical energy gain is of order unity. We calculate by means of numerical simulations the spectrum and angular distribution of particles accelerated by this Fermi process, in particular in the case where particle dynamics can be approximated as small-angle scattering. We show that synchrotron emission from electrons or positrons accelerated by this process can account remarkably well for the observed power-law spectra of GRB afterglows and Crab-like supernova remnants. In the context of a decelerating relativistic fireball, we calculate the maximum particle energy attainable by acceleration at the external blast wave, and discuss the minimum energy for this acceleration process and its consequences for the observed spectrum.Comment: To appear in Proceedings of the 5th Huntsville Gamma-Ray Burst Symposium. LaTeX, 6 pages, 2 figures, uses aipproc.sty and epsfi

    An eigenfunction method for particle acceleration at ultra-relativistic shocks

    Get PDF
    We adapt and modify the eigenfunction method of computing the power-law spectrum of particles accelerated at a relativistic shock front via the first-order Fermi process (Kirk, J.G., Schneider, P., Astrophysical Journal 315, 425 (1987)) to apply to shocks of arbitrarily high Lorentz factor. The power-law index of accelerated particles undergoing isotropic small-angle scattering at an ultrarelativistic, unmagnetized shock is found to be s=4.23 +/- 0.2 (where s=d\ln f/ d\ln p, with f the Lorentz-invariant phase-space density and p the momentum), in agreement with the results of Monte-Carlo simulations. We present results for shocks in plasmas with different equations of state and for Lorentz factors ranging from 5 to infinity.Comment: 4 pages, 2 figures, contribution to the Proceedings of the 5th Huntsville GRB Symposiu
    corecore