7,694 research outputs found

    Ensemble Kalman filter for neural network based one-shot inversion

    Full text link
    We study the use of novel techniques arising in machine learning for inverse problems. Our approach replaces the complex forward model by a neural network, which is trained simultaneously in a one-shot sense when estimating the unknown parameters from data, i.e. the neural network is trained only for the unknown parameter. By establishing a link to the Bayesian approach to inverse problems, an algorithmic framework is developed which ensures the feasibility of the parameter estimate w.r. to the forward model. We propose an efficient, derivative-free optimization method based on variants of the ensemble Kalman inversion. Numerical experiments show that the ensemble Kalman filter for neural network based one-shot inversion is a promising direction combining optimization and machine learning techniques for inverse problems

    Effects of curvature and interactions on the dynamics of the deconfinement phase transition

    Get PDF
    We study the dynamics of first-order cofinement-deconfinement phase transition through nucleation of hadronic bubbles in an expanding quark gluon plasma in the context of heavy ion collisions for interacting quark and hadron gas and by incorporating the effects of curvature energy. We find that the interactions reduce the delay in the phase transition whereas the curvature energy has a mixed behavior. In contrast to the case of early Universe phase transition, here lower values of surface tension increase the supercooling and slow down the hadronization process. Higher values of bag pressure tend to speed up the transition. Another interesting feature is the start of the hadronization process as soon as the QGP is created.Comment: LaTeX, 17 pages including 14 postscript figure

    Cosmic acceleration: Inhomogeneity versus vacuum energy

    Get PDF
    In this essay, I present an alternative explanation for the cosmic acceleration which appears as a consequence of recent high redshift Supernova data. In the usual interpretation, this cosmic acceleration is explained by the presence of a positive cosmological constant or vacuum energy, in the background of Friedmann models. Instead, I will consider a Local Rotational Symmetric (LRS) inhomogeneous spacetime, with a barotropic equation of state for the cosmic matter. Within this framework the kinematical acceleration of the cosmic fluid or, equivalently, the inhomogeneity of matter, is just the responsible of the SNe Ia measured cosmic acceleration. Although in our model the Cosmological Principle is relaxed, it maintains local isotropy about our worldline in agreement with the CBR experiments.Comment: LATEX, 7 pags, no figs, Honorable Mention in the 1999 Essay Competition of the Gravity Research Foundatio

    What is the Homogeneity of our Universe Telling Us?

    Get PDF
    The universe we observe is homogeneous on super-horizon scales, leading to the ``cosmic homogeneity problem''. Inflation alleviates this problem but cannot solve it within the realm of conservative extrapolations of classical physics. A probabilistic solution of the problem is possible but is subject to interpretational difficulties. A genuine deterministic solution of the homogeneity problem requires radical departures from known physics.Comment: 6 pages. Awarded Honorable Mention in the 1999 Gravity Research Foundation Essay Competitio

    Non-stationary de Sitter cosmological models

    Full text link
    In this note it is proposed a class of non-stationary de Sitter, rotating and non-rotating, solutions of Einstein's field equations with a cosmological term of variable function.Comment: 11 pages, Latex. International Journal of Modern Physics D (accepted for publication

    Cosmic scalar fields with flat potential

    Full text link
    The dynamics of cosmic scalar fields with flat potential is studied. Their contribution to the expansion rate of the universe is analyzed, and their behaviour in a simple model of phase transitions is discussed.Comment: 9 page

    The American Religious Landscape and the 2004 Presidential Vote: Increased Polarization

    Get PDF
    Presents findings from a post-election survey conducted in November and December 2004. Explores the polarization between different religions, as well as within the major religious traditions

    A Relativistic Description of Gentry's New Redshift Interpretation

    Get PDF
    We obtain a new expression of the Friedmann-Robertson-Walker metric, which is an analogue of a static chart of the de Sitter space-time. The reduced metric contains two functions, M(T,R)M(T,R) and Ψ(T,R)\Psi(T,R), which are interpreted as, respectively, the mass function and the gravitational potential. We find that, near the coordinate origin, the reduced metric can be approximated in a static form and that the approximated metric function, Ψ(R)\Psi(R), satisfies the Poisson equation. Moreover, when the model parameters of the Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric coincides with exact solutions of the Einstein equation with the perfect fluid matter. We then solve the radial geodesics on the approximated space-time to obtain the distance-redshift relation of geodesic sources observed by the comoving observer at the origin. We find that the redshift is expressed in terms of a peculiar velocity of the source and the metric function, Ψ(R)\Psi(R), evaluated at the source position, and one may think that this is a new interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters

    A New Redshift Interpretation

    Get PDF
    A nonhomogeneous universe with vacuum energy, but without spacetime expansion, is utilized together with gravitational and Doppler redshifts as the basis for proposing a new interpretation of the Hubble relation and the 2.7K Cosmic Blackbody Radiation.Comment: 9 pages LaTeX, no figure
    corecore