10 research outputs found

    Comparative analysis of gasification and adiabatic digestion of corn for practical implementation in conventional gas turbines

    Get PDF
    Clean, more responsible energy production in gas turbine power plants is a challenge. Interestingly, various alternative sources could be found in agricultural locations with great potential of being transformed from agricultural waste to energy. Corn cob gasification gas could be successfully implemented in gas turbines through co-firing with natural gas. Concurrently, agricultural biogas could also be employed for such a purpose. The technology could be implemented in locations such as Vojvodina, Serbia, which is an agricultural region with great potential for producing biogas from agricultural waste. Therefore, this paper approaches the practical implementation of gas produced by adiabatic corn digestion with CO2 recirculation. Five different cases were assessed. The results are compared to previous analyses that used co-firing of the corn cob gasification gas in representative gas turbine systems. Impacts of the fuel composition on the characteristics of combustion were analyzed using CHEMKIN PRO with GRI–Mech 3.0. Impacts of fuel quality on the power plant performance were analyzed through calculations with a numerical model based on a Brayton cycle of 3.9 MW power output. The application shows acceptable values during co-firing with natural gas without modification of the overall system, with better outlet parameters compared to pure corn gasification gas

    Fuel rich ammonia-hydrogen injection for humidified gas turbines

    Get PDF
    The use of new fuels and operating strategies for gas turbine technologies plays a relevant component for carbon emissions reduction and the use of sustainable energy sources. Among non-carbon fuels, hydrogen-based fuels have been proposed as one of the main strategies for decarbonisation of the power sector. Ammonia is a good representative of these fuels as it is carbon-free and the second largest chemical commodity, having been produced worldwide for more than a century from various energy resources, i.e. fossil fuels, biomass or other renewable sources. However, the use of ammonia as a fuel in industrial gas turbines brings some practical challenges directly linked to the final efficiency of these systems, especially when the latter are compared to current Dry Low Nitrogen Oxides technologies. Thus, this work covers a series of analytical, numerical and experimental studies performed to determine the efficiency of using ammonia/hydrogen blends in combination with humidified methodologies to deliver competitive systems for the use of ammonia-hydrogen power generation. The study was conducted using CHEMKIN-PRO reaction networks employing novel reaction chemical kinetics, in combination with bespoke analytical codes to determine efficiencies of systems previously calibrated experimentally. Finally, experimental trials using steam injection were carried out to determine potential of these blends. The novel results demonstrate that the use of humidified ammonia-hydrogen injection provides similar efficiencies to both Dry Low Nitrogen Oxides and humidified methane-based technologies ∼30%, with flames that are stable and low polluting under swirling conditions, thus opening the opportunity for further progression on the topic

    Humidified ammonia/hydrogen RQL combustion in a trigeneration gas turbine cycle

    Get PDF
    Ammonia is an example of a zero-carbon fuel of high interest for implementation in gas turbine technologies. Preliminary analyses showed that a basic humidified ammonia-hydrogen Brayton cycle can produce total plant efficiencies of ~34%. However, further improvements are required to make these units competitive to current fossil-based plants whose efficiencies are above 80%. Thus, this work seeks to numerically and analytically demonstrate the implementation of a complex cycle that will increase final efficiencies whilst using the full potential of ammonia as a cooling fluid, power fuel and heating gas (i.e. trigeneration cycle) with heat district distribution. Therefore, a basic gas turbine cycle was inserted into a two-shaft, reverse Brayton gas turbine plant facility. In order to improve combustion and reduce emissions, a Rich-Quench-Lean system was integrated into the analysis by resolving the combustion performance via CHEMKIN-PRO. Detailed sensitivity analyses were also conducted throughout the burner to identify the key reactions responsible for both flame stability and NO formation/reburn pathways, which are vital for future safe and efficient operation of these types of cycles. The study shows that the total efficiency has significantly increased when compared to the basic turbine facility, with a value ~59%. Moreover, low emissions were accomplished below current European NOx thresholds. The obtained values show a significant potential for the utilisation of ammoni-based blends with steam injection in gas turbine facilities through employment of novel cycles that consider lower dilution in the combustion sector in combination with novel ammonia combustion systems and trigeneration concepts

    Fuel rich ammonia-hydrogen injection for humidified gas turbines

    Full text link
    The use of new fuels and operating strategies for gas turbine technologies plays a relevant component for carbon emissions reduction and the use of sustainable energy sources. Among non-carbon fuels, hydrogen-based fuels have been proposed as one of the main strategies for decarbonisation of the power sector. Ammonia is a good representative of these fuels as it is carbon-free and the second largest chemical commodity, having been produced worldwide for more than a century from various energy resources, i.e. fossil fuels, biomass or other renewable sources. However, the use of ammonia as a fuel in industrial gas turbines brings some practical challenges directly linked to the final efficiency of these systems, especially when the latter are compared to current Dry Low Nitrogen Oxides technologies. Thus, this work covers a series of analytical, numerical and experimental studies performed to determine the efficiency of using ammonia/hydrogen blends in combination with humidified methodologies to deliver competitive systems for the use of ammonia-hydrogen power generation. The study was conducted using CHEMKIN-PRO reaction networks employing novel reaction chemical kinetics, in combination with bespoke analytical codes to determine efficiencies of systems previously calibrated experimentally. Finally, experimental trials using steam injection were carried out to determine potential of these blends. The novel results demonstrate that the use of humidified ammonia-hydrogen injection provides similar efficiencies to both Dry Low Nitrogen Oxides and humidified methane-based technologies 30%, with flames that are stable and low polluting under swirling conditions, thus opening the opportunity for further progression on the topic

    Chapter 10 - Safety Aspects

    Full text link
    https://commons.wmu.se/lib_chapters/1024/thumbnail.jp
    corecore