177 research outputs found

    Large deviations sum-queue optimality of a radial sum-rate monotone opportunistic scheduler

    Full text link
    A centralized wireless system is considered that is serving a fixed set of users with time varying channel capacities. An opportunistic scheduling rule in this context selects a user (or users) to serve based on the current channel state and user queues. Unless the user traffic is symmetric and/or the underlying capacity region a polymatroid, little is known concerning how performance optimal schedulers should tradeoff "maximizing current service rate" (being opportunistic) versus "balancing unequal queues" (enhancing user-diversity to enable future high service rate opportunities). By contrast with currently proposed opportunistic schedulers, e.g., MaxWeight and Exp Rule, a radial sum-rate monotone (RSM) scheduler de-emphasizes queue-balancing in favor of greedily maximizing the system service rate as the queue-lengths are scaled up linearly. In this paper it is shown that an RSM opportunistic scheduler, p-Log Rule, is not only throughput-optimal, but also maximizes the asymptotic exponential decay rate of the sum-queue distribution for a two-queue system. The result complements existing optimality results for opportunistic scheduling and point to RSM schedulers as a good design choice given the need for robustness in wireless systems with both heterogeneity and high degree of uncertainty.Comment: Revised version. Major changes include addition of details/intermediate steps in various proofs, a summary of technical steps in Table 1, and correction of typos

    Joint Scheduling of URLLC and eMBB Traffic in 5G Wireless Networks

    Full text link
    Emerging 5G systems will need to efficiently support both enhanced mobile broadband traffic (eMBB) and ultra-low-latency communications (URLLC) traffic. In these systems, time is divided into slots which are further sub-divided into minislots. From a scheduling perspective, eMBB resource allocations occur at slot boundaries, whereas to reduce latency URLLC traffic is pre-emptively overlapped at the minislot timescale, resulting in selective superposition/puncturing of eMBB allocations. This approach enables minimal URLLC latency at a potential rate loss to eMBB traffic. We study joint eMBB and URLLC schedulers for such systems, with the dual objectives of maximizing utility for eMBB traffic while immediately satisfying URLLC demands. For a linear rate loss model (loss to eMBB is linear in the amount of URLLC superposition/puncturing), we derive an optimal joint scheduler. Somewhat counter-intuitively, our results show that our dual objectives can be met by an iterative gradient scheduler for eMBB traffic that anticipates the expected loss from URLLC traffic, along with an URLLC demand scheduler that is oblivious to eMBB channel states, utility functions and allocation decisions of the eMBB scheduler. Next we consider a more general class of (convex/threshold) loss models and study optimal online joint eMBB/URLLC schedulers within the broad class of channel state dependent but minislot-homogeneous policies. A key observation is that unlike the linear rate loss model, for the convex and threshold rate loss models, optimal eMBB and URLLC scheduling decisions do not de-couple and joint optimization is necessary to satisfy the dual objectives. We validate the characteristics and benefits of our schedulers via simulation

    Constrained Network Slicing Games: Achieving service guarantees and network efficiency

    Get PDF
    Network slicing is a key capability for next generation mobile networks. It enables one to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their mobiles/services while optimizing network efficiency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a constrained resource allocation game, where (i) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while (ii) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher market, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to provide the desired guarantees. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks
    • …
    corecore