4,292 research outputs found
Development and evaluation of braze alloys for vacuum furnace brazing
Copper and copper-base alloys tested for use in vacuum furnace brazing of rocket engine tubular thrust chamber
Self-steepening of light pulses
Self-steepening of light pulses due to propagation in medium with intensity-dependent index of refractio
Recommended from our members
Magnetic characterization of perpendicular recording media
In this paper, we describe techniques for the magnetic characterization of perpendicular recording media. Such measurements made using traditional techniques, such as the vibrating sample magnetometry (VSM) and alternating gradient force magnetometer (AGFM), have to be corrected for the sample shape demagnetizing factor, which is often found not to be equal to -4p. For measurements other than the simple hysteresis loop, such as remanence curves, this correction must be carried out in real time and we describe the method by which this can be achieved and the process for achieving the correct demagnetization of perpendicular films prior to measurements of the isothermal remanent magnetization curve. A further complication is that real perpendicular media have a soft underlayer beneath the recording layer, which swamps and confuses signals from instruments such as VSM or AGFM. Hence, we describe the construction and use of a magnetooptical Kerr effect magnetometer, which does not penetrate significantly into the soft layer and enables the perpendicular layer to be measured independently. We describe the properties of a traditional alloy perpendicular medium and a Co-Pd multilayer system, which in the latter case exhibits multiple switching behavior. We also address the issue of the effect of the soft underlayer on the coupling in similar longitudinal films and find that the presence of the underlayer induces significant additional coupling effects that may well give rise to an increase in noise in recorded signal
Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner
We report on the use of a fixed-spacer Fabry–Perot ring cavity to filter spatially and temporally a 10-W laser-diode-pumped Nd:YAG master-oscillator power amplifier. The spatial filtering leads to a 7.6-W TEMinfinity beam with 0.1% higher-order transverse mode content. The temporal filtering reduces the relative power fluctuations at 10 MHz to 2.8 x 10^-/sqrtHz, which is 1 dB above the shot-noise limit for 50 mA of detected photocurrent
Recommended from our members
In vivo and in vitro assessment of mirtazapine pharmacokinetics in cats with liver disease.
BackgroundLiver disease (LD) prolongs mirtazapine half-life in humans, but it is unknown if this occurs in cats with LD and healthy cats.Hypothesis/objectivesTo determine pharmacokinetics of administered orally mirtazapine in vivo and in vitro (liver microsomes) in cats with LD and healthy cats.AnimalsEleven LD and 11 age-matched control cats.MethodsCase-control study. Serum was obtained 1 and 4 hours (22 cats) and 24 hours (14 cats) after oral administration of 1.88 mg mirtazapine. Mirtazapine concentrations were measured by liquid chromatography with tandem mass spectrometry. Drug exposure and half-life were predicted using limited sampling modeling and estimated using noncompartmental methods. in vitro mirtazapine pharmacokinetics were assessed using liver microsomes from 3 LD cats and 4 cats without LD.ResultsThere was a significant difference in time to maximum serum concentration between LD cats and control cats (median [range]: 4 [1-4] hours versus 1 [1-4] hours; P = .03). The calculated half-life of LD cats was significantly prolonged compared to controls (median [range]: 13.8 [7.9-61.4] hours versus 7.4 [6.7-9.1] hours; P < .002). Mirtazapine half-life was correlated with ALT (P = .002; r = .76), ALP (P < .0001; r = .89), and total bilirubin (P = .0008; r = .81). The rate of loss of mirtazapine was significantly different between microsomes of LD cats (-0.0022 min-1 , CI: -0.0050 to 0.00054 min-1 ) and cats without LD (0.01849 min-1 , CI: -0.025 to -0.012 min-1 ; P = .002).Conclusions and clinical importanceCats with LD might require less frequent administration of mirtazapine than normal cats
The mean magnetic field of the sun: Observations at Stanford
A solar telescope was built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field were made daily since May 1975. The typical mean field magnitude is about 0.15 gauss with typical measurement error less than 0.05 gauss. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (seen near the earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model
Electrodynamics of Media
Contains research objectives and reports on one research project.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 36-039-AMC-03200(E
Energies and wave functions for a soft-core Coulomb potential
For the family of model soft Coulomb potentials represented by V(r) =
-\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters
Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and
eigenvalues, E_{\nu\ell}, are monotonic in each parameter. The potential
envelope method is applied to obtain approximate analytic estimates in terms of
the known exact spectra for pure power potentials. For the case q =1, the
Asymptotic Iteration Method is used to find exact analytic results for the
eigenvalues E_{\nu\ell} and corresponding wave functions, expressed in terms of
Z and \beta. A proof is presented establishing the general concavity of the
scaled electron density near the nucleus resulting from the truncated
potentials for all q. Based on an analysis of extensive numerical calculations,
it is conjectured that the crossing between the pair of states
[(\nu,\ell),(\nu',\ell')], is given by the condition \nu'\geq (\nu+1) and \ell'
\geq (\ell+3). The significance of these results for the interaction of an
intense laser field with an atom is pointed out. Differences in the observed
level-crossing effects between the soft potentials and the hydrogen atom
confined inside an impenetrable sphere are discussed.Comment: 13 pages, 5 figures, title change, minor revision
Spectral characteristics for a spherically confined -1/r + br^2 potential
We consider the analytical properties of the eigenspectrum generated by a
class of central potentials given by V(r) = -a/r + br^2, b>0. In particular,
scaling, monotonicity, and energy bounds are discussed. The potential is
considered both in all space, and under the condition of spherical confinement
inside an impenetrable spherical boundary of radius R. With the aid of the
asymptotic iteration method, several exact analytic results are obtained which
exhibit the parametric dependence of energy on a, b, and R, under certain
constraints. More general spectral characteristics are identified by use of a
combination of analytical properties and accurate numerical calculations of the
energies, obtained by both the generalized pseudo-spectral method, and the
asymptotic iteration method. The experimental significance of the results for
both the free and confined potential V(r) cases are discussed.Comment: 16 pages, 4 figure
- …