1,478 research outputs found

    SPD - the Spin Physics Project with Polarized Proton and Deuteron Beams at the NICA Collider

    Get PDF
    The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at s\sqrt{s} up to 27 GeV and luminosity up to 1032^{32} cm2^{-2} s1^{-1}. Measurement of asymmetries in the Drell-Yan pairs, charmonium and prompt photon production can provide an access to the full set of leading twist TMD PDFs in nucleons. The experimental setup is planned as a universal 4π\pi detector for a wide range of physics tasks.Comment: QNP 2018 proceeding

    On the possibility to use ATLAS and CMS detectors for neutrino physics

    Full text link
    Energetic primary cosmic rays entering the Earth's atmosphere generate flux of secondary particles including neutrinos. Muon neutrinos passed through the Earth and produced muons via the charged current reaction can be registered by experimental setups intended for the measurements with colliding beams. Due to large geometrical size and advanced muon detecting system such detectors as ATLAS and CMS on LHC have chance to contribute also into the neutrino physics. The estimation of possible rates of up-going muons produced by neutrinos is given.Comment: 4 pages, 3 figure

    Muoproduction of exotic charmonia at COMPASS

    Full text link
    Exotic charmonium-like states have been targeted by various experiments in the last 15 years, but their nature still is unknown. Photo-(muo)production is a new promising instrument to study them. COMPASS, a fixed target experiment at CERN, analyzed the full set of the data collected with a muon beam between 2002 and 2011, covering the range from 7 GeV to 19 GeV in the centre-of-mass energy of the (virtual)photon-nucleon system. Production of the X(3872) state in the reaction μ+ Nμ+(J/ψπ+π)π±N\mu^+~N \rightarrow \mu^+(J/\psi\pi^+\pi^- )\pi^{\pm} N' has been observed with a statistical significance of around 5 σ\sigma. The shape of the π+π\pi^+\pi^- mass distribution from the decay X(3872)J/ψπ+πX(3872)\rightarrow J/\psi\pi^+\pi^- shows disagreement with previous observations. The product of the cross section and the branching fraction of the X(3872)X(3872) decay into J/ψππJ/\psi\pi\pi is estimated as 71±\pm28(stat)±\pm39(syst) pb. The results obtained for the production of the Zc±(3900)Z_c^{\pm}(3900) are also reported as well as future perspectives.Comment: 4 pares 4 figure

    SPD - the Spin Physics Project with Polarized Proton and Deuteron Beams at the NICA Collider

    Full text link
    The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at s\sqrt{s} up to 27 GeV and luminosity up to 1032^{32} cm2^{-2} s1^{-1}. Measurement of asymmetries in the Drell-Yan pairs, charmonium and prompt photon production can provide an access to the full set of leading twist TMD PDFs in nucleons. The experimental setup is planned as a universal 4π\pi detector for a wide range of physics tasks.Comment: QNP 2018 proceeding

    S\mathcal{S}-Matrix of Nonlocal Scalar Quantum Field Theory in the Representation of Basis Functions

    Full text link
    Nonlocal quantum theory of one-component scalar field in DD-dimensional Euclidean spacetime is studied in representations of S\mathcal{S}-matrix theory for both polynomial and nonpolynomial interaction Lagrangians. The theory is formulated on coupling constant gg in the form of an infrared smooth function of argument xx for space without boundary. Nonlocality is given by evolution of Gaussian propagator for the local free theory with ultraviolet form factors depending on ultraviolet length parameter ll. By representation of the S\mathcal{S}-matrix in terms of abstract functional integral over primary scalar field, the S\mathcal{S} form of a grand canonical partition function is found. And, by expression of S\mathcal{S}-matrix in terms of the partition function, the representation for S\mathcal{S} in terms of basis functions is obtained. Derivations are given for discrete case where basis functions are Hermite functions, and for continuous case where basis functions are trigonometric functions. The obtained expressions for the S\mathcal{S}-matrix are investigated within the framework of variational principle based on Jensen inequality. Equations with separable kernels satisfied by variational function qq are found and solved, yielding results for both the polynomial theory φ4\varphi^{4} and the nonpolynomial sine-Gordon theory. A new definition of the S\mathcal{S}-matrix is proposed to solve additional divergences which arise in application of Jensen inequality for the continuous case. Analytical results are illustrated numerically. For simplicity of numerical calculation: the D=1D=1 case is considered, and propagator for the free theory GG is in the form of Gaussian function typically in the Virton-Quark model. The formulation for nonlocal QFT in momentum kk space of extra dimensions with subsequent compactification into physical spacetime is discussed.Comment: 38 pages, 18 figures; v2: significant text editing; v3: text and plots edited, references and acknowledgments added; prepared for the special issue of the journal Particles in memory of G.V. Efimo

    Nonlocal Scalar Quantum Field Theory: Functional Integration, Basis Functions Representation and Strong Coupling Expansion

    Full text link
    Nonlocal QFT of one-component scalar field φ\varphi in DD-dimensional Euclidean spacetime is considered. The generating functional (GF) of complete Green functions Z\mathcal{Z} as a functional of external source jj, coupling constant gg, and spatial measure dμd\mu is studied. An expression for GF Z\mathcal{Z} in terms of the abstract integral over the primary field φ\varphi is given. An expression for GF Z\mathcal{Z} in terms of integrals over the primary field and separable Hilbert space (HS) is obtained by means of a separable expansion of the free theory inverse propagator L^\hat{L} over the separable HS basis. The classification of functional integration measures D[φ]\mathcal{D}\left[\varphi\right] is formulated, according to which trivial and two nontrivial versions of GF Z\mathcal{Z} are obtained. Nontrivial versions of GF Z\mathcal{Z} are expressed in terms of 11-norm and 00-norm, respectively. The definition of the 00-norm generator Ψ\varPsi is suggested. Simple cases of sharp and smooth generators are considered. Expressions for GF Z\mathcal{Z} in terms of integrals over the separable HS with new integrands are obtained. For polynomial theories φ2n,n=2,3,4,,\varphi^{2n},\, n=2,3,4,\ldots, and for the nonpolynomial theory sinh4φ\sinh^{4}\varphi, integrals over the separable HS in terms of a power series over the inverse coupling constant 1/g1/\sqrt{g} for both norms (11-norm and 00-norm) are calculated. Critical values of model parameters when a phase transition occurs are found numerically. A generalization of the theory to the case of the uncountable integral over HS is formulated. A comparison of two GFs Z\mathcal{Z}, one in the case of uncountable HS integral and one obtained using the Parseval-Plancherel identity, is given.Comment: 26 pages, 2 figures; v2: significant additions in the text; prepared for the special issue "QCD and Hadron Structure" of the journal Particles; v3: minimal corrections; v4: paragraphs added related to Reviewer comment

    BODY AERODYNAMICS: CONTRIBUTION TO LONG JUMP PERFORMANCE

    Get PDF
    A mathematical model of a long jumper flight dynamics is proposed. The model incorporates the factor of the full aerodynamic force exerted during the flight phase under varying conditions. The full aerodynamic force is applied to the body at some angle to the vector of air speed and can be represented as vector sum of drag and lift forces. The magnitudes of the drag and lift components, as well as their role in the length of the jump are affected by a number of parameters, such as flight kinematics, wind velocity, mean altitude, etc., which vary from athlete to athlete, between attempts and competition grounds. Analysis of the video recordings of the jumps of the leading long jumpers were processed using computerized image processing schemes. As the result, the kinematics of the jumps and the aerodynamics of the athletes' bodies at various stages of the flight phase, drag and lift quotients were calculated as the function of the angle of attack of the body, using regression analysis approach. The results obtained make possible determining the influence of the wind velocity and mean altitude. Based on this, the forecast of results and comparable values, derived from the results obtained under specific conditions can be performed. Table gives the results of numerical analysis for three high performance attempts in trial conditions and recalculated to the normalized conditions (zero wind /zero mean elevation). The comparison of the actual and normalized data indicates that the absolute value of the results in long jump during last 24 years might be reconsidered. As another application of the developed model, a series of iso-energetic trajectories was emulated, in order to enhance the performance by optimizing the flight aerodynamics under average conditions
    corecore