13 research outputs found
Axial forces and bending moments in the loaded rabbit tibia in vivo
<p>Abstract</p> <p>Background</p> <p>Different animal models are used as fracture models in orthopaedic research prior to implant use in humans, although biomechanical forces can differ to a great extend between species due to variable anatomic conditions, particularly with regard to the gait. The rabbit is an often used fracture model, but biomechanical data are very rare. The objective of the present study was to measure axial forces, bending moments, and bending axis directly in the rabbit tibia <it>in vivo</it>. The following hypothesis was tested: Axial forces and bending moments in the mid-diaphysis of rabbit tibia differ from other experimental animals or indirectly calculated data.</p> <p>Methods</p> <p>A minifixateur system with 4 force sensors was developed and attached to rabbit tibia (<it>n </it>= 4), which were subsequently ostectomised. Axial forces, bending moments and bending angles were calculated telemetrically during weight bearing in motion between 6 and 42 days post operation.</p> <p>Results</p> <p>Highest single values were 201% body weight [% bw] for axial forces and 409% bw cm for bending moments. Whereas there was a continous decrease in axial forces over time after day 10 (<it>P </it>= 0.03 on day 15), a decrease in bending moments was inconsistent (<it>P </it>= 0.03 on day 27). High values for bending moments were frequently, but not consistently, associated with high values for axial forces.</p> <p>Conclusion</p> <p>Axial forces in rabbit tibia exceeded axial forces in sheep, and differed from indirectly calculated data. The rabbit is an appropriate fracture model because axial loads and bending moments in rabbit tibia were more closely to human conditions than in sheep tibia as an animal model.</p
Clinical implications of gait analysis in the rehabilitation of adult patients with "Prader-Willi" Syndrome: a cross-sectional comparative study ("Prader-Willi" Syndrome vs matched obese patients and healthy subjects)
<p>Abstract</p> <p>Background</p> <p>Being severely overweight is a distinctive clinical feature of Prader-Willi Syndrome (PWS). PWS is a complex multisystem disorder, representing the most common form of genetic obesity. The aim of this study was the analysis of the gait pattern of adult subjects with PWS by using three-Dimensional Gait Analysis. The results were compared with those obtained in a group of obese patients and in a group of healthy subjects.</p> <p>Methods</p> <p>Cross-sectional, comparative study: 19 patients with PWS (11 males and 8 females, age: 18–40 years, BMI: 29.3–50.3 kg/m<sup>2</sup>); 14 obese matched patients (5 males and 9 females, age: 18–40 years, BMI: 34.3–45.2 kg/m<sup>2</sup>); 20 healthy subjects (10 males and 10 females, age: 21–41 years, BMI: 19.3–25.4 kg/m<sup>2</sup>). Kinematic and kinetic parameters during walking were assessed by an optoelectronic system and two force platforms.</p> <p>Results</p> <p>PWS adult patients walked slower, had a shorter stride length, a lower cadence and a longer stance phase compared with both matched obese, and healthy subjects. Obese matched patients showed spatio-temporal parameters significantly different from healthy subjects.</p> <p>Furthermore, Range Of Motion (ROM) at knee and ankle, and plantaflexor activity of PWS patients were significantly different between obese and healthy subjects. Obese subjects revealed kinematic and kinetic data similar to healthy subjects.</p> <p>Conclusion</p> <p>PWS subjects had a gait pattern significantly different from obese patients. Despite that, both groups had a similar BMI. We suggest that PWS gait abnormalities may be related to abnormalities in the development of motor skills in childhood, due to precocious obesity. A tailored rehabilitation program in early childhood of PWS patients could prevent gait pattern changes.</p
Inclusive soft pion production from 12.3 and 17.5 GeV/c protons on Be, Cu, and An
Journals published by the American Physical Society can be found at http://publish.aps.org