755 research outputs found

    The basis of nonlocal curvature invariants in quantum gravity theory

    Get PDF
    A complete basis of nonlocal invariants in quantum gravity theory is built to third order in spacetime curvature and matter-field strengths. The nonlocal identities are obtained which reduce this basis for manifolds with dimensionality 2ω<62\omega<6. The present results are used in heat-kernel theory, theory of gauge fields and serve as a basis for the model-independent approach to quantum gravity and, in particular, for the study of nonlocal vacuum effects in the gravitational collapse problem.Comment: 28 pages, REVTeX, Alberta Thy 14-9

    Thermal radiation of conducting nanoparticles

    Full text link
    The thermal radiation of small conducting particles was investigated in the region where the Stephan-Boltzmann law is not valid and strongly overestimates radiation losses. The new criterion for the particle size, at which black body radiation law fails, was formulated. The approach is based on the magnetic particle polarization, which is valid until very small sizes (cluster size) where due to drop of particle conductivity the electric polarization prevails over the magnetic one. It was also shown that the radiation power of clusters, estimated on the basis of the experimental data, is lower than that given by the Stephan-Boltzmann law.Comment: 12 pages, 5 figures, 1 tabl

    Non-reciprocal light scattering by lattice of magnetic vortices

    Full text link
    We report on experimental study of optical properties of two-dimensional square lattice of triangle Co and CoFe nanoparticles with a vortex magnetization distribution. We demonstrate that intensity of light scattered in diffraction maxima depends on the vorticity of the particles magnetization and it can be manipulated by applying an external magnetic field. The experimental results can be understood in terms of phenomenological theory.Comment: 10 pages, 4 figure

    How to reduce the suspension thermal noise in LIGO without improving the Q's of the pendulum and violin modes

    Full text link
    The suspension noise in interferometric gravitational wave detectors is caused by losses at the top and the bottom attachments of each suspension fiber. We use the Fluctuation-Dissipation theorem to argue that by careful positioning of the laser beam spot on the mirror face it is possible to reduce the contribution of the bottom attachment point to the suspension noise by several orders of magnitude. For example, for the initial and enhanced LIGO design parameters (i.e. mirror masses and sizes, and suspension fibers' lengths and diameters) we predict a reduction of ∼100\sim 100 in the "bottom" spectral density throughout the band 35−100Hz35-100\hbox{Hz} of serious thermal noise. We then propose a readout scheme which suppresses the suspension noise contribution of the top attachment point. The idea is to monitor an averaged horizontal displacement of the fiber of length l l; this allows one to record the contribution of the top attachment point to the suspension noise, and later subtract it it from the interferometer readout. For enhanced LIGO this would allow a suppression factor about 100 in spectral density of suspension thermal noise.Comment: a few misprints corrected; submitted to Classical and Quantum Gravit
    • …
    corecore