10 research outputs found
Recommended from our members
Lack of Association of Rare Functional Variants in TSC1/TSC2 Genes with Autism Spectrum Disorder
Background: Autism spectrum disorder (ASD) is reported in 30 to 60% of patients with tuberous sclerosis complex (TSC) but shared genetic mechanisms that exist between TSC-associated ASD and idiopathic ASD have yet to be determined. Through the small G-protein Rheb, the TSC proteins, hamartin and tuberin, negatively regulate mammalian target of rapamycin complex 1 (mTORC1) signaling. It is well established that mTORC1 plays a pivotal role in neuronal translation and connectivity, so dysregulation of mTORC1 signaling could be a common feature in many ASDs. Pam, an E3 ubiquitin ligase, binds to TSC proteins and regulates mTORC1 signaling in the CNS, and the FBXO45-Pam ubiquitin ligase complex plays an essential role in neurodevelopment by regulating synapse formation and growth. Since mounting evidence has established autism as a disorder of the synapses, we tested whether rare genetic variants in TSC1, TSC2, MYCBP2, RHEB and FBXO45, genes that regulate mTORC1 signaling and/or play a role in synapse development and function, contribute to the pathogenesis of idiopathic ASD. Methods: Exons and splice junctions of TSC1, TSC2, MYCBP2, RHEB and FBXO45 were resequenced for 300 ASD trios from the Simons Simplex Collection (SSC) using a pooled PCR amplification and next-generation sequencing strategy, targeted to the discovery of deleterious coding variation. These detected, potentially functional, variants were confirmed by Sanger sequencing of the individual samples comprising the pools in which they were identified. Results: We identified a total of 23 missense variants in MYCBP2, TSC1 and TSC2. These variants exhibited a near equal distribution between the proband and parental pools, with no statistical excess in ASD cases (P > 0.05). All proband variants were inherited. No putative deleterious variants were confirmed in RHEB and FBXO45. Three intronic variants, identified as potential splice defects in MYCBP2 did not show aberrant splicing upon RNA assay. Overall, we did not find an over-representation of ASD causal variants in the genes studied to support them as contributors to autism susceptibility. Conclusions: We did not observe an enrichment of rare functional variants in TSC1 and TSC2 genes in our sample set of 300 trios
Recommended from our members
A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas
Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas
Sequence-tagged sites (STSs) spanning 4p16.3 and the Huntington disease candidate region
The generation of sequence-tagged sites (STSs) has been proposed as a unifying approach to correlating the disparate results generated by genetic and various physical techniques being used to map the human genome. We have developed an STS map to complement the existing physical and genetic maps of 4p16.3, the region containing the Huntington disease gene. A total of 18 STSs span over 4 Mb of 4p16.3, with an average spacing of about 250 kb. Eleven of the STSs are located within the primary candidate HD region of 2.5 Mb between D4S126 and D4S168. The availability of STSs makes the corresponding loci accessible to the general community without the need for distribution of cloned DNA. These STSs should also provide the means to isolate yeast artificial chromosome clones spanning the HD candidate region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30062/1/0000432.pd
Recommended from our members
Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset
Huntington’s disease (HD) is an inherited neurodegenerative disorder characterized by motor, cognitive and behavioral disturbances, caused by the expansion of a CAG trinucleotide repeat in the HD gene. The CAG allele size is the major determinant of age at onset (AO) of motor symptoms, although the remaining variance in AO is highly heritable. The rs7665116 SNP in PPARGC1A, encoding the mitochondrial regulator PGC-1α, has been reported to be a significant modifier of AO in three European HD cohorts, perhaps due to affected cases from Italy. We attempted to replicate these findings in a large collection of (1,727) HD patient DNA samples of European origin. In the entire cohort, rs7665116 showed a significant effect in the dominant model (p value = 0.008) and the additive model (p value = 0.009). However, when examined by origin, cases of Southern European origin had an increased rs7665116 minor allele frequency (MAF), consistent with this being an ancestry-tagging SNP. The Southern European cases, despite similar mean CAG allele size, had a significantly older mean AO (p < 0.001), suggesting population-dependent phenotype stratification. When the generalized estimating equations models were adjusted for ancestry, the effect of the rs7665116 genotype on AO decreased dramatically. Our results do not support rs7665116 as a modifier of AO of motor symptoms, as we found evidence for a dramatic effect of phenotypic (AO) and genotypic (MAF) stratification among European cohorts that was not considered in previously reported association studies. A significantly older AO in Southern Europe may reflect population differences in genetic or environmental factors that warrant further investigation
Recommended from our members
Modeling NF2 with human arachnoidal and meningioma cell culture systems: NF2 silencing reflects the benign character of tumor growth
Meningiomas, common tumors arising from arachnoidal cells of the meninges, may occur sporadically, or in association with the inherited disorder, neurofibromatosis 2 (NF2). Most sporadic meningiomas result from NF2 inactivation, resulting in loss of tumor suppressor merlin, implicated in regulating membrane-cytoskeletal organization. To investigate merlin function in an authentic target cell type for NF2 tumor formation, we established primary cultures from genetically-matched meningioma and normal arachnoidal tissues. Our studies revealed novel and distinct cell biological and biochemical properties unique to merlin-deficient meningioma cells compared to merlin-expressing arachnoidal and meningioma cells, and other NF2-deficient cell types. Merlin-deficient meningioma cells displayed cytoskeletal and cell contact defects, altered cell morphology and growth properties, most notably cell senescence, implicating the activation of senescence pathways in limiting benign meningioma growth. Merlin suppression by RNAi in arachnoidal cells replicated merlin-deficient meningioma features, thus establishing these cell systems as disease-relevant models for studying NF2 tumorigenesis
Recommended from our members
NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth
Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2
Clinical-Genetic Associations in the Prospective Huntington at Risk Observational Study (PHAROS): Implications for Clinical Trials.
IMPORTANCE: Identifying measures that are associated with the cytosine-adenine-guanine (CAG) expansion in individuals before diagnosis of Huntington disease (HD) has implications for designing clinical trials.
OBJECTIVE: To identify the earliest features associated with the motor diagnosis of HD in the Prospective Huntington at Risk Observational Study (PHAROS).
DESIGN, SETTING, AND PARTICIPANTS: A prospective, multicenter, longitudinal cohort study was conducted at 43 US and Canadian Huntington Study Group research sites from July 9, 1999, through December 17, 2009. Participants included 983 unaffected adults at risk for HD who had chosen to remain unaware of their mutation status. Baseline comparability between CAG expansion (≥37 repeats) and nonexpansion (\u3c37 \u3erepeats) groups was assessed. All participants and investigators were blinded to individual CAG analysis. A repeated-measures analysis adjusting for age and sex was used to assess the divergence of the linear trend between the expanded and nonexpanded groups. Data were analyzed from April 27, 2010, to September 3, 2013.
EXPOSURE: Huntington disease mutation status in individuals with CAG expansion vs without CAG expansion.
MAIN OUTCOMES AND MEASURES: Unified Huntington\u27s Disease Rating Scale motor (score range, 0-124; higher scores indicate greater impairment), cognitive (symbol digits modality is the total number of correct responses in 90 seconds; lower scores indicate greater impairment), behavioral (score range, 0-176; higher scores indicate greater behavioral symptoms), and functional (Total Functional Capacity score range, 0-13; lower scores indicate reduced functional ability) domains were assessed at baseline and every 9 months up to a maximum of 10 years.
RESULTS: Among the 983 research participants at risk for HD in the longitudinal cohort, 345 (35.1%) carried the CAG expansion and 638 (64.9%) did not. The mean (SD) duration of follow-up was 5.8 (3.0) years. At baseline, participants with expansions had more impaired motor (3.0 [4.2] vs 1.9 [2.8]; P \u3c .001), cognitive (P \u3c .05 for all measures except Verbal Fluency, P = .52), and behavioral domain scores (9.4 [11.4] vs 6.5 [8.5]; P \u3c .001) but not significantly different measures of functional capacity (12.9 [0.3] vs 13.0 [0.2]; P = .23). With findings reported as mean slope (95% CI), in the longitudinal analyses, participants with CAG expansions showed significant worsening in motor (0.84 [0.73 to 0.95] vs 0.03 [-0.05 to 0.11]), cognitive (-0.54 [-0.67 to -0.40] vs 0.22 [0.12 to 0.32]), and functional (-0.08 [-0.09 to -0.06] vs -0.01 [-0.02 to 0]) measures compared with those without expansion (P \u3c .001 for all); behavioral domain scores did not diverge significantly between groups.
CONCLUSIONS AND RELEVANCE: Using these prospectively accrued clinical data, relatively large treatment effects would be required to mount a randomized, placebo-controlled clinical trial involving premanifest HD individuals who carry the CAG expansion