2 research outputs found

    Koopmans' multiconfigurational self-consistent field (MCSCF) Fukui functions and MCSCF perturbation theory

    No full text
    Prediction of chemical reactivity has become one of the highest priority tasks of computational chemistry since the development of the methods of modeling electronic structure. Despite the general simplicity of the physical concept of reactivity and the rapid development of modern density functional theory (DFT) methods, this task remains state-of-the-art for systems with wavefunctions that have a multiconfigurational character. In such cases, for the accurate description of reactivity one needs to use multiconfigurational approaches that are much heavier computationally then ordinary single-determinant DFT methods. Moreover, the complexity of the calculation of reactivity is increased by the necessity to calculate ionic and transition states. These computational challenges can be addressed by employing the concepts of Koopmans' theorem and its extension to a multiconfigurational case. We present a simplified methodology for the calculation of Fukui functions, based on Koopmans' approximation for multiconfigurational Green's functions developed in our previous works. Also, an extension of this methodology based on perturbation theory has been developed to improve accuracy. \ua9 2013 Published by NRC Research Press.Peer reviewed: YesNRC publication: Ye

    Density functional theory investigation of the effect of axial coordination and annelation on the absorption spectroscopy of nickel(II) and vanadyl porphyrins relevant to bitumen and crude oils

    No full text
    The vanadium and nickel components in heavy oils and bitumen are important impurities in catalytic processing and form aggregates with other asphaltene components. Metalloporphyrins are commonly analyzed using the characteristic Soret band in the UV-vis absorption spectrum. However, the Soret band of metalloporphyrins in petroleum is broadened and weaker than expected based on the concentration of Ni and V in heavy oils and the extinction coefficients of isolated porphyrins. We hypothesize that the low intensity and broadening of the Soret band could be due to axial coordination of the metal center or fusion (annelation) of aromatic rings on the porphyrin \u3c0-system. This hypothesis is examined using the density functional theory for geometry optimization and time-dependent density functional theory (TD-DFT) for calculation of excited states of nickel(II) and vanadyl porphyrins with axially coordinated ligands and annelated polyaromatic hydrocarbons. Predictions of the excited electronic states performed using the tandem of TD-DFT and conductor-like polarizable continuum model of solvation support this hypothesis and provide insight into the extent of Soret band broadening and intensity decrease due to coordination and annelation. These computational results, validated with respect to visible absorption spectra, are important for understanding asphaltene aggregation and spectroscopic characterization and suggest methods for removal of transition metals from heavy oil. \ua9 2013 Published by NRC Research Press.Peer reviewed: YesNRC publication: Ye
    corecore