6 research outputs found

    Features of the resource species Miscanthus sacchariflorus (Maxim.) Hack. when introduced in West Siberia

    Get PDF
    Here we provide a scientific justification and experimental support for the choice of easily renewable cellulosic feedstock Miscanthus sacchariflorus (Maxim.) Hack. in order to obtain high-quality nutrient broths therefrom for bacterial cellulose biosynthesis. The plant life-forms promising for breeding were screened under introduction conditions at the Central Siberian Botanical Garden, SB RAS, and this study was thus aimed at investigating the full and reduced ontogenetic patterns; cellulose and noncellulosic contents, including lignin; and duraminization of vegetative (feedstock source) organs throughout the seasonal development. The full ontogenetic patterns of the plants grown from seeds that had been collected in native habitats were compared to show that M. sacchariflorus and M. sinensis Anderss. accessions are distinguished by longer being at the most vulnerable developmental stages: seedlings and plantlets. Hence, it is preferable to cultivate seedlings on protected ground, and plantations are advisable to establish with more stable cloned vegetative material. The chemical compositions of the whole plant, leaf and stem separately, from seven M. sacchariflorus harvests were examined to reveal a rise in cellulose content and a drop in noncellulosic content with plantation age. The Miscanthus stem was found to contain more cellulose than the leaf, regardless of the plant age. The overall cellulose content was 48−53 %, providing a rationale for studies of bacterial cellulose biosynthesis in a M. sacchariflorusderived nutrient medium. Since high lignin content is undesirable for technological processes concerned with biosynthesis of bacterial cellulose, we performed histochemical assays of transverse sections of the culms to monitor the seasonal course of lignification. Our results suggest that the specific time limits for harvesting the aboveground biomass as a feedstock be validated by histochemical data on the seasonal course of lignification of M. sacchariflorus sprouts. To sum up, the examined chemical composition of M. sacchariflorus grown in the Siberian climate conditions demonstrated its prospects as a source of glucose substrate, the basic component of good-quality nutrient media for biosynthesis of bacterial cellulose

    The formation and the study of a collection of the Miscanthus resource species gene pool in the conditions of the West Siberian forest steppe

    Get PDF
    Several species of the genus Miscanthus Anderss. (elephant grass) characterized by a high rate of growth of the aboveground vegetative mass are currently in the focus of attention due to their high practical application as a source of bioethanol and cellulose. The main goals of this study were: (1) molecular genetic identification and (2) histochemical analysis of the genus Miscanthus Anderss. species in the collection of Central Siberian Botanical Garden SB RAS in order to identify the most perspective and technically valuable individuals. To study the collection of Miscanthus samples, a multi-disciplinary approach was applied. To collect the samples of different species from native habitats, traditional systematic and geobotanical methods (comparative morphological and phytocenological) were used. According to the results of the ISSR-analysis, 16 samples of three Miscanthus species were divided into two clades: Sinensis and Sacchariflorus, the former including two subclades. For the samples of M. purpurascens_I and II, a hybrid origin of this species was confirmed by ISSR data. The molecular data obtained from the study allowed us to hypothesize that the samples involved in the subclade I of the Sinensis clade could be used as donors of resistance to adverse environments, and the samples of the subclade II, as donors of high biomass productivity. Based on histochemical analysis, sclerenchyma cells were characterized by the most lignin-rich thickened membranes, so the most appropriate direction in Miscanthus selection should be based on identification and using less lignin-containing samples

    Letter of Intent by the Solenoidal Detector Collaboration to construct and operate a detector at the Superconducting Super Collider

    No full text
    corecore