505 research outputs found

    Low Threshold Parametric Decay Back Scattering Instability in Tokamak ECRH Experiments

    Full text link
    The experimental conditions leading to substantial reduction of backscattering decay instability threshold in ECRH experiments in toroidal devices are analyzed. It is shown that drastic decrease of threshold is provided by non monotonic behavior of plasma density in the vicinity of magnetic island and poloidal magnetic field inhomogeneity making possible localization of ion Bernstein decay waves. The corresponding ion Bernstein wave gain and the parametric decay instability pump power threshold is calculated.Comment: 7 pages, 4 figure

    Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing

    Full text link
    We consider cooling of neutron stars (NSs) with superfluid cores composed of neutrons, protons, and electrons (assuming singlet-state pairing of protons, and triplet-state pairing of neutrons). We mainly focus on (nonstandard) triplet-state pairing of neutrons with the mJ=2|m_J| = 2 projection of the total angular momentum of Cooper pairs onto quantization axis. The specific feature of this pairing is that it leads to a power-law (nonexponential) reduction of the emissivity of the main neutrino processes by neutron superfluidity. For a wide range of neutron critical temperatures TcnT_{cn}, the cooling of NSs with the mJ=2|m_J| = 2 superfluidity is either the same as the cooling with the mJ=0m_J = 0 superfluidity, considered in the majority of papers, or much faster. The cooling of NSs with density dependent critical temperatures Tcn(ρ)T_{cn}(\rho) and Tcp(ρ)T_{cp}(\rho) can be imitated by the cooling of the NSs with some effective critical temperatures TcnT_{cn} and TcpT_{cp} constant over NS cores. The hypothesis of strong neutron superfluidity with mJ=2|m_J| = 2 is inconsistent with current observations of thermal emission from NSs, but the hypothesis of weak neutron superfluidity of any type does not contradict to observations.Comment: 10 pages, 6 figure

    Dark Matter Search Perspectives with GAMMA-400

    Full text link
    GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is ~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400 is planned to be launched on the Russian space platform Navigator in 2019. The GAMMA-400 perspectives in the search for dark matter in various scenarios are presented in this paperComment: 4 pages, 4 figures, submitted to the Proceedings of the International Cosmic-Ray Conference 2013, Brazil, Rio de Janeir

    A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    Full text link
    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the proton rejection from electrons with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for particles with initial inclination of 30 degrees. The calculations were performed for the electron energy range from 50 GeV to 1 TeV.Comment: 19 pages, 10 figures, submitted to Advances and Space Researc

    Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    Full text link
    This paper deals with the new spectral and microturbulence experimental data and their analysis, which show, that the radial electric field Er generated at the LH heating (LHH) in the FT-2 is high enough to form the transport barriers. The ETB is formed when LHH is switched off. The radial fluctuation-induced EB drift flux densities near LCFS in SOL are measured at two different poloidal angles. For this purpose two Langmuir probes located at low and high field sides of the torus are used. Registration of the poloidal and radial components of the electric field and density fluctuations at the same time during one discharge permits to measure the poloidal asymmetry of the transport reduction mechanism of the radial and poloidal particle fluxes in the SOL. The absolute E(~) fluctuation levels show dependence on the sign of Er shear. The modification of the microscale turbulence by the poloidal Er x B rotation shear EB at the L - H transition near LCFS is also studied by X-mode fluctuation Reflectometry. The new data were obtained by spatial spectroscopic technique.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    corecore