52 research outputs found
Vascular Endothelial Growth Factor-B Induces a Distinct Electrophysiological Phenotype in Mouse Heart
Vascular endothelial growth factor B (VEGF-B) is a potentmediator of vascular, metabolic, growth, and stress responses in the heart, but the effects on cardiac muscle and cardiomyocyte function are not known. The purpose of this study was to assess the effects of VEGF-B on the energy metabolism, contractile, and electrophysiological properties of mouse cardiac muscle and cardiac muscle cells. In vivo and ex vivo analysis of cardiac-specific VEGF-B TG mice indicated that the contractile function of the TG hearts was normal. Neither the oxidative metabolism of isolated TG cardiomyocytes nor their energy substrate preference showed any difference to WT cardiomyocytes. Similarly, myocyte Ca2+ signaling showed only minor changes compared to WT myocytes. However, VEGF-B overexpression induced a distinct electrophysiological phenotype characterized by ECG changes such as an increase in QRSp time and decreases in S and R amplitudes. At the level of isolated TG cardiomyocytes, these changes were accompanied with decreased action potential upstroke velocity and increased duration (APD60-70). These changes were partly caused by downregulation of sodium current (INa) due to reduced expression of Nav1.5. Furthermore, TG myocytes had alterations in voltage-gated K + currents, namely decreased density of transient outward current (Ito) and total K + current (Ipeak). At the level of transcription, these were accompanied by downregulation of Kv channel-interacting protein 2 (Kcnip2), a knownmodulatory subunit for Kv4.2/3 channel. Cardiac VEGF-B overexpression induces a distinct electrophysiological phenotype including remodeling of cardiomyocyte ion currents, which in turn induce changes in action potential waveform and ECG.Peer reviewe
Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils.
Neutrophils are essential players in the first-line defense against invading bacteria and fungi. Besides its antiapoptotic role, the inhibitor of apoptosis protein (IAP) family member X-linked IAP (XIAP) has been shown to regulate innate immune signaling. Whereas the role of XIAP in innate signaling pathways is derived mostly from work in macrophages and dendritic cells, it is not known if and how XIAP contributes to these pathways in neutrophils. Here we show that in response to bacterial lipopolysaccharides (LPS), mouse neutrophils secreted considerable amounts of tumor necrosis factor-α (TNFα) and interleukin-1ÎČ (IL-1ÎČ) and, in accordance with earlier reports, XIAP prevented LPS-induced hypersecretion of IL-1ÎČ also in neutrophils. Interestingly, and in contrast to macrophages or dendritic cells, Xiap-deficient neutrophils were insensitive to LPS-induced cell death. However, combined loss of function of XIAP and cIAP1/-2 resulted in rapid neutrophil cell death in response to LPS. This cell death occurred by classical apoptosis initiated by a TNFα- and RIPK1-dependent, but RIPK3- and MLKL-independent, pathway. Inhibition of caspases under the same experimental conditions caused a shift to RIPK3-dependent cell death. Accordingly, we demonstrate that treatment of neutrophils with high concentrations of TNFα induced apoptotic cell death, which was fully blockable by pancaspase inhibition in wild-type neutrophils. However, in the absence of XIAP, caspase inhibition resulted in a shift from apoptosis to RIPK3- and MLKL-dependent necroptosis. Loss of XIAP further sensitized granulocyte-macrophage colony-stimulating factor (GM-CSF)-primed neutrophils to TNFα-induced killing. These data suggest that XIAP antagonizes the switch from TNFα-induced apoptosis to necroptosis in mouse neutrophils. Moreover, our data may implicate an important role of neutrophils in the development of hyperinflammation and disease progression of patients diagnosed with X-linked lymphoproliferative syndrome type 2, which are deficient in XIAP
Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice
Objective: Angiopoietin-2 (Ang-2) blocking agents are currently undergoing clinical trials for use in cancer treatment. Ang-2 has also been associated with rupture-prone atherosclerotic plaques in humans, suggesting a role for Ang-2 in plaque stability. Despite the availability of Ang-2 blocking agents, their clinical use is still lacking. Our aim was to establish if Ang-2 has a role in atheroma development and in the transition of subclinical to clinically relevant atherosclerosis. We investigated the effect of antibody-mediated Ang-2 blockage on atherogenesis after in a mouse model of atherosclerosis. Methods: Hypercholesterolemic (low-density lipoprotein receptor(-/-) apolipoprotein B-100/100) mice were subjected to high-cholesterol diet for eight weeks, one group with and one group without Ang-2 blocking antibody treatment during weeks 4-8. To enhance plaque development, a peri-adventitial collar was placed around the carotid arteries at the start of antibody treatment. Aortic root, carotid arteries and brachiocephalic arteries were analyzed to evaluate the effect of Ang-2 blockage on atherosclerotic plaque size and stable plaque characteristics. Results: Anti-Ang-2 treatment reduced the size of fatty streaks in the brachiocephalic artery (-72%, p <0.05). In addition, antibody-mediated Ang-2 blockage reduced plasma triglycerides (-27%, p <0.05). In contrast, Ang-2 blockage did not have any effect on the size or composition (collagen content, macrophage percentage, adventitial microvessel density) of pre-existing plaques in the aortic root or collar-induced plaques in the carotid artery. Conclusions: Ang-2 blockage was beneficial as it decreased fatty streak formation and plasma triglyceride levels, but had no adverse effect on pre-existing atherosclerosis in hypercholesterolemic mice. (C) 2015 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe
Drug-induced eRF1 degradation promotes readthrough and reveals a new branch of ribosome quality control.
Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25
The association between prealbumin, allâcause mortality and response to nutritional treatment in patients at nutritional risk. Secondary analysis of a randomizedâcontrolled trial
IntroductionDue to the shorter half-life as compared with albumin, serum prealbumin concentrations have been proposed to be useful nutritional biomarkers for the assessment of patients at nutritional risk. In a post-hoc analysis of patients at nutritional risk from a randomized-controlled nutritional trial, we therefore tested the hypothesis that (a) prealbumin is associated with higher all-cause 180-day mortality rates and that (b) individualized nutritional support compared to usual care nutrition more effectively improves survival at 30 days in patients with low prealbumin levels compared to patients with normal prealbumin levels.MethodsWe performed a pre-specified cohort study in patients included in the pragmatic, Swiss, multicenter, randomized-controlled EFFORT trial comparing the effects of individualized nutritional support with usual care. We studied low prealbumin concentrations (<0.17 g/l) in a subgroup of 517 patients from one participating centre.ResultsA total of 306 (59.2%) patients (mean age 71.9 years, 53.6% men) had low admission prealbumin levels (<0.17 g/L). There was a significant association between low prealbumin levels and mortality at 180-days [115/306 (37.6%) vs. 47/211 (22.3%), fully adjusted hazard ratio (HR) 1.59, 95%CI 1.11 to 2.28, p=0.011]. Prealbumin levels significantly improved the prognostic value of the Nutritional Risk Screening total score regarding mortality prediction at short- and long-term. The difference in mortality between patients receiving individualized nutritional support and usual care nutrition was similar for patients with low prealbumin levels compared with patients with normal prealbumin levels [HR 0.90 (95%CI 0.51 to 1.59) vs. HR 0.88 (95%CI 0.35 to 2.23)] with no evidence for interaction (p=0.823).ConclusionAmong medical inpatients at nutritional risk, low admission prealbumin levels correlated with different nutritional markers and higher mortality risk; but patients with low or high prealbumin levels had a similar benefit from nutritional support. Further studies should identify nutritional markers that help further personalize nutritional interventions.Trial RegistrationClinicalTrials.gov Identifier: NCT0251747
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Human NMD ensues independently of stable ribosome stalling
Nonsense-mediated mRNA decay (NMD) was thought to ensue when ribosomes fail to terminate translation properly. However, the authors observe similar ribosome occupancy at stop codons of NMD sensitive and insensitive mRNAs, showing that human NMD is not activated by stable ribosome stalling as previously suggested
Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID
Production of human translation-competent lysates using dual centrifugation
Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates
- âŠ