12 research outputs found

    Introduction to Quantum Information Processing

    Full text link
    As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developing new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at http://www.c3.lanl.gov/~knill/qip/prhtm

    Spectral Conditions on the State of a Composite Quantum System Implying its Separability

    Full text link
    For any unitarily invariant convex function F on the states of a composite quantum system which isolates the trace there is a critical constant C such that F(w)<= C for a state w implies that w is not entangled; and for any possible D > C there are entangled states v with F(v)=D. Upper- and lower bounds on C are given. The critical values of some F's for qubit/qubit and qubit/qutrit bipartite systems are computed. Simple conditions on the spectrum of a state guaranteeing separability are obtained. It is shown that the thermal equilbrium states specified by any Hamiltonian of an arbitrary compositum are separable if the temperature is high enough.Comment: Corrects 1. of Lemma 2, and the (under)statement of Proposition 7 of the earlier version

    Witnessing causal nonseparability

    Full text link
    Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks - in particular, the violation of causal inequalities - which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation - the quantum switch - is a genuine example of "indefinite causal order". We do this by introducing a new tool - the causal witness - which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal nequality.Comment: 15 + 12 pages, 5 figures. Published versio
    corecore