6 research outputs found
Influence of Endophytic Bacterium, Cellulosimicrobium sp. FRR2 on Plant Growth of Amaranthus campestris L. and Bacterial Survival at Adverse Environmental Conditions
The endophytic microorganisms are believed to be an important bio-resource for modern agriculture because of their beneficial effects on plant growth promotion, biocontrol, stress tolerance, and diseases resistance. This study was focused to know the beneficial effect of endophytic bacterium (FRR2) isolated from the roots of Ficus religiosa L. on Amaranthus campestris L. and their tolerance ability against salinity and heavy metals. The strain FRR2 was recognized as Cellulosimicrobium sp. by 16s rRNA sequencing and phylogenetic study. The bacterial isolate FRR2 showed salt (at 150 mM NaCl) and metal (at 150 µM CuSO4 and 100 µM ZnSO4) tolerance ability and significantly higher growth rate of Amaranthus campestris in a green leafy vegetable might be due to the nitrogen fixation, indole acetic acid production, amylase and protease activities. In addition, the endophyte FRR2 application slightly increased the antioxidants activity than their controls. The results of this study revealed that Cellulosimicrobium sp. strain FRR2 would be an effective endophyte to increase the growth of green leafy vegetables.</jats:p
Alleviation of Phytophthora infestans Mediated Necrotic Stress in the Transgenic Potato (Solanum tuberosum L.) with Enhanced Ascorbic acid Accumulation
Potato is the most widely cultivated non-cereal crop in the world, and like any other crop, it is susceptible to yield losses because of various factors, including pathogen attacks. Among the various diseases of potato, late blight caused by the oomycete Phytophthora infestans is considered as the most devastating disease worldwide. In this study, transgenic potato plants overexpressing the D-galacturonic acid reductase (GalUR) gene with an enhanced level of cellular L-ascorbate (L-AsA) were challenged with Phytophthora infestans to determine the level of stress tolerance induced in those plants. With the onset of pathogen infection, necrotic lesions progressively expanded and became necrotic in the control plants. The transgenic potato lines with enhanced ascorbic acid showed reduced necrotic lesions. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were relatively lower in transgenic plants compared to the untransformed control (UT) plants. The mRNA expressions of pathogenesis-related (PR) genes, such as pathogenesis related 1 (PR1) and phenylalanine ammonia-lyase (PAL) were slightly higher in GalUR overexpressing transgenic lines as compared to the untransformed control plants. Pathogen infection also altered the mRNA expression of genes associated with gibberellic acid (GA) and abscisic acid (ABA) biosynthesis. Furthermore, the increase in various antioxidant enzymes was also observed in the gene expression analysis with the transgenic plants. The complete loss of the pathogen growth and disease occurrence was not observed in our study; however, the findings indicated that an increase in the level of cellular L-ascorbate in the transgenic potato leads to enhanced cellular antioxidants, PR genes and plant defense hormones, such as GA and ABA resulting in the reduction of the disease symptoms caused by the Phytophthora infestans.</jats:p
Optimized in vitro micro-tuber production for colchicine biosynthesis in Gloriosa superba L. and its anti-microbial activity against Candida albicans
Differential expression of nickel nanoparticles of Lactobacillus plantarum on VDR/LncRNA EIF3J-DT in Colorectal cancer
Colorectal cancer (CRC) is the third most prevalent cancer worldwide. Vitamin D receptor (VDR) gene mutations and Vitamin D deficiency contribute to CRC development and progression. Certain long non-coding RNAs (lncRNAs) directly inhibit VDR gene transcription, leading to VDR mutation. Thus, targeting oncogenic lncRNAs and VDR expression is a promising strategy for effective cancer treatment. Here, we green-synthesized Lactobacillus plantarum loaded nickel oxide nanoparticles (LpNiONPs) to assess their anticancer potential in CRC by targeting long non-coding RNA EIF3J- divergent transcript (lncRNA EIF3J-DT) and VDR. The potent bioactive component present in L. plantarum was identified via gas chromatography-mass spectrometry (GC–MS) analysis, and its interaction with VDR, as well as the functional interaction with lncRNA EIF3J-DT, were evaluated using the PyRx program and RPISeq-software, respectively. The LpNiONPs were characterized using UV–Vis spectroscopy, Zeta Potential, dynamic light scattering (DLS), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) techniques. The anticancer potential of LpNiONPs against HT-29 cells was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, scratch assay, 4′,6-diamidino-2-phenylindole (DAPI)/ acridine orange-ethidium bromide (AO-EtBr) staining experiments, and reverse transcriptase-PCR to evaluate the expression of lncRNA EIF3J-DT/VDR and apoptotic-related genes. The potent bioactive compound Pyrrolo (1,2-a) pyrazine-1,4-dione in L. plantarum strongly interacts with VDR, highlighting its drug design potential. The formation of LpNiONPs was confirmed via UV–Vis spectroscopy with an absorption peak at 394 nm. LpNiONPs were positively charged, monodispersed, and stable square-shaped nanoparticles. LpNiONPs show dose-dependent cytotoxicity and induced apoptosis, confirmed by staining images in HT-29 cells. Moreover, LpNiONPs downregulated lncRNA EIF3J-DT, CYP24-A1 and BCL2 genes while upregulating VDR, cas-3, cas-9 and BAX in HT-29 cells. These findings suggest that LpNiONPs exhibit anticancer activity by promoting VDR-associated apoptosis by inhibiting lncRNA EIF3J-DT in CRC cells
