7 research outputs found

    РСконструированный эпидСрмис Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro β€” модСль для Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… исслСдований ΠΊΠΎΠΆΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    Background. The reconstructed human epidermis (RE) is an in vitro tissue-engineering construct similar to the native epidermis. Objective. To develop a full-layer RE. Describe its structure: determine the presence of all layers of the epidermal component, including basal, spinous and granular layers and stratum corneum of the epidermis; detect the basement membrane, the border between the epidermal and mesenchymal component. Materials and methods. Isolation of keratinocytes and fibroblasts from human donor skin. Cultivation of keratinocytes and fibroblasts in vitro under 2D conditions, cell subculturing and 3D modeling of RE, obtaining cryosections, histological staining, immunohistochemical (IHC) study with antibodies to cytokeratins 14 and 10, Ki67 protein, loricrin, laminin 5 and plectin. Results. A technique was developed for the formation of RE. Histological examination showed that the stratification of keratinocyte layers occurs during the formation of RE. Layers are formed including basal, spinous and granular layers and stratum corneum. The IHC study has shown the proliferative activity of keratinocytes of the basal layer and has detected the presence of marker proteins of keratinocytes at different stages of differentiation. RE basal keratinocytes, like native ones, form hemidesmosomes and synthesize basement membrane proteins. Conclusions. A full-layer human RE was obtained in vitro. RE meets all the characteristics of the native epidermis and it is suitable for basic and practical research in the field of skin biology, dermatology, and cosmetology.РСконструированный эпидСрмис Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (Π Π­) тканСинТСнСрная конструкция in vitro, подобная Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ эпидСрмису. ЦСль исслСдования. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ полнослойный Π Π­. ΠžΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ структуру: ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ всСх слоСв ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°, Π² Ρ‚ΠΎΠΌ числС базального, ΡˆΠΈΠΏΠΎΠ²Π°Ρ‚ΠΎΠ³ΠΎ, гранулярного ΠΈ Ρ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ слоСв эпидСрмиса; Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±Π°Π·Π°Π»ΡŒΠ½ΡƒΡŽ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ, Π³Ρ€Π°Π½ΠΈΡ†Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ фибробластов ΠΈΠ· донорской ΠΊΠΎΠΆΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ фибробластов Π² 2D-условиях in vitro, пСрСсСв ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ 3D-ΠΌΠΎΠ΄Π΅Π»ΠΈ Π Π­, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ криосрСзов, гистологичСская окраска, иммуногистохимичСскоС (Π˜Π“Π₯) исслСдованиС с Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°ΠΌΠΈ ΠΊ Ρ†ΠΈΡ‚ΠΎΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½Π°ΠΌ 14 ΠΈ 10, Π±Π΅Π»ΠΊΡƒ Ki67, Π»ΠΎΡ€ΠΈΠΊΡ€ΠΈΠ½Ρƒ, Π»Π°ΠΌΠΈΠ½ΠΈΠ½Ρƒ 5 ΠΈ ΠΏΠ»Π΅ΠΊΡ‚ΠΈΠ½Ρƒ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° формирования Π Π­. ГистологичСскоС исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π Π­ происходит стратификация слоСв ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ². Π€ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ слои Π±Π°Π·Π°Π»ΡŒΠ½Ρ‹Ρ…, ΡˆΠΈΠΏΠΎΠ²Π°Ρ‚Ρ‹Ρ…, гранулярных ΠΈ ΠΎΡ€ΠΎΠ³ΠΎΠ²Π΅Π²Π°ΡŽΡ‰ΠΈΡ… ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ². Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π˜Π“Π₯-исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² базального слоя ΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π±Π΅Π»ΠΊΠΎΠ²-ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ², Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… стадиях Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ. Π‘Π°Π·Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ Π Π­ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ гСмидСсмосомы ΠΈ ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΡƒΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ базальной ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠΉ всСм характСристикам Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ эпидСрмиса полнослойный Π Π­ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro, ΠΏΡ€ΠΈΠ³ΠΎΠ΄Π½Ρ‹ΠΉ для Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ практичСских исслСдований Π² области Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠΎΠΆΠΈ, Π΄Π΅Ρ€ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ космСтологии

    News in Brief

    No full text

    Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET

    Get PDF
    SummaryWe have developed the first red fluorescent protein, named rsTagRFP, which possesses reversibly photoswitchable absorbance spectra. Illumination with blue and yellow light switches rsTagRFP into a red fluorescent state (ON state) or nonfluorescent state (OFF state), respectively. The ON and OFF states exhibit absorbance maxima at 567 and 440 nm, respectively. Due to the photoswitchable absorbance, rsTagRFP can be used as an acceptor forΒ a photochromic FΓΆrster resonance energy transfer (pcFRET). The photochromic acceptor facilitates determination of a protein-protein interaction by providing an internal control for FRET. Using pcFRET with EYFP as a donor, we observed an interaction between epidermal growth factor receptor and growth factor receptor-binding protein 2 in live cells by detecting the modulation of both the fluorescence intensity and lifetime of the EYFP donor upon the ON-OFF photoswitching of the rsTagRFP acceptor
    corecore