22 research outputs found

    Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism

    Get PDF
    Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neurondirected microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder

    Expression of the Rap1 Guanine Nucleotide Exchange Factor, MR-GEF, Is Altered in Individuals with Bipolar Disorder

    Get PDF
    In the rodent forebrain GABAergic neurons are generated from progenitor cells that express the transcription factors Dlx1 and Dlx2. The Rap-1 guanine nucleotide exchange factor, MR-GEF, is turned on by many of these developing GABAergic neurons. Expression of both Dlx1/2 and MR-GEF is retained in both adult mouse and human forebrain where, in human, decreased Dlx1 expression has been associated with psychosis. Using in situ hybridization studies we show that MR-GEF expression is significantly down-regulated in the forebrain of Dlx1/2 double mutant mice suggesting that MR-GEF and Dlx1/2 form part of a common signalling pathway during GABAergic neuronal development. We therefore compared MR-GEF expression by in situ hybridization in individuals with major psychiatric disorders (schizophrenia, bipolar disorder, major depression) and control individuals. We observed a significant positive correlation between layers II and IV of the dorso-lateral prefrontal cortex (DLPFC) in the percentage of MR-GEF expressing neurons in individuals with bipolar disorder, but not in individuals with schizophrenia, major depressive disorder or in controls. Since MR-GEF encodes a Rap1 GEF able to activate G-protein signalling, we suggest that changes in MR-GEF expression could potentially influence neurotransmission

    No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism

    Get PDF
    Abstract Background While evidence for white matter and astrocytic abnormalities exist in autism, a detailed investigation of astrocytes has not been conducted. Such an investigation is further warranted by an increasing role for neuroinflammation in autism pathogenesis, with astrocytes being key players in this process. We present the first study of astrocyte density and morphology within the white matter of the dorsolateral prefrontal cortex (DLPFC) in individuals with autism. Methods DLPFC formalin-fixed sections containing white matter from individuals with autism (n = 8, age = 4–51 years) and age-matched controls (n = 7, age = 4–46 years) were immunostained for glial fibrillary acidic protein (GFAP). Density of astrocytes and other glia were estimated via the optical fractionator, astrocyte somal size estimated via the nucleator, and astrocyte process length via the spaceballs probe. Results We found no evidence for alteration in astrocyte density within DLPFC white matter of individuals with autism versus controls, together with no differences in astrocyte somal size and process length. Conclusion Our results suggest that astrocyte abnormalities within the white matter in the DLPFC in autism may be less pronounced than previously thought. However, astrocytic dysregulation may still exist in autism, even in the absence of gross morphological changes. Our lack of evidence for astrocyte abnormalities could have been confounded to an extent by having a small sample size and wide age range, with pathological features potentially restricted to early stages of autism. Nonetheless, future investigations would benefit from assessing functional markers of astrocytes in light of the underlying pathophysiology of autism

    Self-organized nanostructure modified microelectrode for sensitive electrochemical glutamate detection in stem cells-derived brain organoids

    Get PDF
    Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·μM-1 ·cm-2 . It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 μM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 μM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system

    Peripheral Transcription of NRG-ErbB Pathway Genes Are Upregulated in Treatment-Resistant Schizophrenia

    No full text
    Investigation of peripheral gene expression patterns of transcripts within the NRG–ErbB signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia and more specifically treatment-resistant schizophrenia (TRS) is limited. The present study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, and type I(Ig2) containing transcripts in TRS by investigating 11 NRG–ErbB signaling pathway mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). We also examined the effect of clozapine exposure on transcript levels using cultured peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts (ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction for multiple testing using the Benjamini–Hochberg method. Investigation of clinical factors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were negatively correlated with duration of illness. However, no transcript was associated with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported by our in vitro PBMC clozapine exposure experiment. Taken together with previously published NRG1 results, our findings suggest an overall upregulation of transcripts within the NRG–ErbB signaling pathway among individuals with schizophrenia some of which attenuate over duration of illness. Follow-up studies are needed to determine if the observed peripheral upregulation of transcripts within the NRG–ErbB signaling pathway are specific to TRS or are a general blood-based marker of schizophrenia

    Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients

    Get PDF
    Abstract Differential expression of neuregulin-1 (NRG1) mRNA isoforms and proteins has been reported in schizophrenia, primarily in post-mortem brain tissue. In this study, we examined 12 NRG1 SNPs, eight NRG1 mRNA isoforms (type I, type I(Ig2), type II, type III, type IV, EGFα, EGFβ, pan-NRG1) in whole blood, and NRG1-β1 protein in serum of clozapine-treated schizophrenia patients (N = 71) and healthy controls (N = 57). In addition, using cultured peripheral blood mononuclear cells (PBMC) from 15 healthy individuals, we examined the effect of clozapine on NRG1 mRNA isoform and protein expression. We found elevated levels of NRG1 mRNA, specifically the EGFα (P = 0.0175), EGFβ (P = 0.002) and type I(Ig2) (P = 0.023) containing transcripts, but lower NRG1-β1 serum protein levels (P = 0.019) in schizophrenia patients compared to healthy controls. However, adjusting for smoking status attenuated the difference in NRG1-β1 serum levels (P = 0.050). Examination of clinical factors showed NRG1 EGFα (P = 0.02) and EGFβ (P = 0.02) isoform expression was negatively correlated with age of onset. However, we found limited evidence that NRG1 mRNA isoform or protein expression was associated with current chlorpromazine equivalent dose or clozapine plasma levels, the latter corroborated by our PBMC clozapine exposure experiment. Our SNP analysis found no robust expression quantitative trait loci. Our results represent the first comprehensive investigation of NRG1 isoforms and protein expression in the blood of clozapine-treated schizophrenia patients and suggest levels of some NRG1 transcripts are upregulated in those with schizophrenia

    Vertical Nanowire Electrode Arrays as Novel Electrochemical Label-Free Immunosensors

    No full text
    A new method for the fabrication of a label-free electrochemical immunosensor based on vertical nanowires (VNWs) is proposed. The VNWs are functionalized to detect antibodies against a major astrocytic structural protein component, glial fibrillary acidic protein (GFAP). It is revealed that the interaction of GFAP-antibody with functionalized VNWs leads to a clear change in device conductance and the corresponding capacitance

    Vertical Nanowire Electrode Arrays as Novel Electrochemical Label-Free Immunosensors

    No full text
    A new method for the fabrication of a label-free electrochemical immunosensor based on vertical nanowires (VNWs) is proposed. The VNWs are functionalized to detect antibodies against a major astrocytic structural protein component, glial fibrillary acidic protein (GFAP). It is revealed that the interaction of GFAP-antibody with functionalized VNWs leads to a clear change in device conductance and the corresponding capacitance
    corecore