224 research outputs found

    Deep mantle structure and the postperovskite phase transition

    Get PDF
    Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solid–solid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals

    Seismological support for the metastable superplume model, sharp features, and phase changes within the lower mantle

    Get PDF
    Recently, a metastable thermal-chemical convection model was proposed to explain the African Superplume. Its bulk tabular shape remains relatively stable while its interior undergoes significant stirring with low-velocity conduits along its edges and down-welling near the middle. Here, we perform a mapping of chemistry and temperature into P and S velocity variations and replace a seismically derived structure with this hybrid model. Synthetic seismogram sections generated for this 2D model are then compared directly with corresponding seismic observations of P (P, PCP, and PKP) and S (S, SCS, and SKS) phases. These results explain the anticorrelation between the bulk velocity and shear velocity and the sharpness and level of SKS travel time delays. In addition, we present evidence for the existence of a D" triplication (a putative phase change) beneath the down-welling structure

    Patterns of Late Cenozoic exhumation deduced from apatite and zircon U-He ages from Fiordland, New Zealand

    Get PDF
    New apatite and zircon (U-Th)/He ages from the Fiordland region of New Zealand's South Island expand on earlier results and provide new constraints on patterns of Late Cenozoic exhumation and cooling across this region. Zircon (U-Th)/He cooling ages, in combination with increased density of apatite ages, show that in addition to a gradual northward decrease in cooling ages that was seen during an earlier phase of this study, there is also a trend toward younger cooling ages to the east. Distinct breaks in cooling age patterns on southwestern Fiordland appear to be correlated to the location of previously mapped faults. The northward decrease in ages may reflect asynchronous cooling related to migration in the locus of exhumation driven by subduction initiation, or it may reflect synchronous regional exhumation that exposed different structural levels across Fiordland, or some combination of these effects. In either case, differential exhumation accommodated by major and minor faults that dissect Fiordland basement rocks apparently played an important role in producing the resulting age patterns

    Plate tectonics and convection in the Earth's mantle: toward a numerical simulation

    Full text link

    Development of the Australian-Antarctic depth anomaly

    Get PDF
    The oceanic Australian-Antarctic Discordance (AAD) contains two unusual features: (1) N–S trending anomalously deep bathymetries and (2) rough basement morphologies in young (45° spreading obliquities

    Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase

    Get PDF
    Using a numerical model we explore the consequences of the intrinsic density change (Δρ/ρ ≈ 2–4%) caused by the Fe^(2+) spin transition in ferropericlase on the style and vigor of mantle convection. The effective Clapeyron slope of the transition from high to low spin is strongly positive in pressure-temperature space and broadens with high temperature. This introduces a net spin-state driving density difference for both upwellings and downwellings. In 2-D cylindrical geometry spin-buoyancy dominantly enhances the positive thermal buoyancy of plumes. Although the additional buoyancy does not fundamentally alter large-scale dynamics, the Nusselt number increases by 5–10%, and vertical velocities by 10–40% in the lower mantle. Advective heat transport is more effective and temperatures in the core-mantle boundary region are reduced by up to 12%. Our findings are relevant to the stability of lowermost mantle structures

    Uplift in the Fiordland Region, New Zealand: Implications for Incipient Subduction

    Get PDF
    Low-temperature thermochronometry reveals regional Late Cenozoic denudation in Fiordland, New Zealand, consistent with geodynamic models showing uplift of the overriding plate during incipient subduction. The data show a northward progression of exhumation in response to northward migration of the initiation of subduction. The locus of most recent uplift coincides with a large positive Bouguer gravity anomaly within Fiordland. Thermochronometrically deduced crustal thinning, anomalous gravity, and estimates of surface uplift are all consistent with ∼2 kilometers of dynamic support. This amount of dynamic support is in accord with geodynamic predictions, suggesting that we have dated the initiation of subduction adjacent to Fiordland

    Correspondence: Reply to ‘Numerical modelling of the PERM anomaly and the Emeishan large igneous province’

    Get PDF
    Tectonic plates and plate boundaries migrate substantially through time and mantle plumes are generally accepted to be mobile within the convecting mantle, but it has been proposed that large low shear velocity provinces (LLSVPs) could have been fixed and rigid for as much as 540 million years (Myr). The hypotheses of fixed and rigid LLSVPs cannot be easily tested in the absence of constraints on the past location of lowermost mantle structures. We evaluated the hypothesis9of lower mantle thermochemical structure fixity with numerical experiments. As in earlier studies, we argue that the location of lower mantle thermochemical structures has changed through time

    Circum-Arctic mantle structure and long-wavelength topography since the Jurassic

    Get PDF
    The circum-Arctic is one of the most tectonically complex regions of the world, shaped by a history of ocean basin opening and closure since the Early Jurassic. The region is characterized by contemporaneous large-scale Cenozoic exhumation extending from Alaska to the Atlantic, but its driving force is unknown. We show that the mantle flow associated with subducted slabs of the South Anuyi, Mongol-Okhotsk, and Panthalassa oceans have imparted long-wavelength deflection on overriding plates. We identify the Jurassic-Cretaceous South Anuyi slab under present-day Greenland in seismic tomography and numerical mantle flow models. Under North America, we propose the “Farallon” slab results from Andean-style ocean-continent convergence around ~30°N and from a combination of ocean-continent and intraoceanic subduction north of 50°N. We compute circum-Arctic dynamic topography through time from subduction-driven convection models and find that slabs have imparted on average <1–16 m/Myr of dynamic subsidence across the region from at least 170 Ma to ~50 Ma. With the exception of Siberia, the main phase of circum-Arctic dynamic subsidence has been followed either by slowed subsidence or by uplift of <1–6 m/Myr on average to present day. Comparing these results to geological inferences suggest that subduction-driven dynamic topography can account for rapid Middle to Late Jurassic subsidence in the Slave Craton and North Slope (respectively, <15 and 21 m/Myr, between 170 and 130 Ma) and for dynamic subsidence (<7 m/Myr, ~170–50 Ma) followed by dynamic uplift (<6 m/Myr since 50 Ma) of the Barents Sea region. Combining detailed kinematic reconstructions with geodynamic modeling and key geological observations constitutes a powerful tool to investigate the origin of vertical motion in remote regions
    corecore