99 research outputs found

    Digging into the HLA pockets: A new association with acute leukaemias

    Get PDF
    Acute leukaemias represent a highly heterogeneous group of clonal proliferations of myeloid or lymphoid blasts. In the last decade, the contribution of immunogenetics to cancer biology has elicited a renewed interest in the structures of immune adaptive responses, due to the growing body of evidence concerning their involvement into disease pathogenesis and treatment. The report by Boukouaci and colleagues suggests new associations between patterns of distribution of specific human leukocyte antigen motifs and leukaemogenesis

    Copper Deficiency

    Get PDF

    Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40-60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies' (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness

    Aplastic anemia: quo vadis?

    Get PDF
    In the last 30 years, the field of aplastic anemia (AA), and more generally bone marrow failure syndromes, has undergone a multitude of new discoveries. The application of modern and sophisticated sequencing techniques unveiled a variety of genes associated with these disorders and contributed to a better understanding of the disease pathobiology. This advancement was paralleled by the discovery, clinical testing and subsequent approval of new drugs for the treatment of AA and associated disorders. Several additional agents are currently under evaluation for possible therapies. Herein, we look at the potential future avenues of research in AA through a brief summary of an intergenerational Socratic dialogue between the mentor, who witnessed and actively contributed to the milestones achieved in the last 30 years, and his fellow, who would himself go on to become the mentor of a new generation of AA researchers. (c) 2021 Elsevier Inc. All rights reserved

    The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies

    Get PDF
    The study of metabolic deregulation in myeloid malignancies has led to the investigation of metabolic-targeted therapies considering that cells undergoing leukemic transformation have excessive energy demands for growth and proliferation. However, the most difficult challenge in agents targeting metabolism is to determine a window of therapeutic opportunities between normal and neoplastic cells, considering that all or most of the metabolic pathways important for cancer ontogeny may also regulate physiological cell functions. Targeted therapies have used the properties of leukemic cells to produce altered metabolic products when mutated. This is the case of IDH1/2 mutations generating the abnormal conversion of alpha-ketoglutarate (KG) to 2-hydroxyglutarate, an oncometabolite inhibiting KG-dependent enzymes, such as the TET family of genes (pivotal in characterizing leukemia cells either by mutations, e.g., TET2, or by altered expression, e.g., TET1/2/3). Additional observations derive from the high sensitivity of leukemic cells to oxidative phosphorylation and its amelioration using BCL-2 inhibitors (Venetoclax) or by disrupting the mitochondrial respiration. More recently, nicotinamide metabolism has been described to mediate resistance to Venetoclax in patients with acute myeloid leukemia. Herein, we will provide an overview of the latest research on the link between metabolic pathways interactome and leukemogenesis with a comprehensive analysis of the metabolic consequences of driver genetic lesions and exemplificative druggable pathways

    Alternative Splicing in Myeloid Malignancies

    Get PDF
    Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies

    Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments

    Get PDF
    Myelodysplastic syndromes (MDS) are a group of diseases in which bone marrow stem cells acquire genetic alterations and can initiate leukemia, blocking the production of mature blood cells. It is of crucial importance to identify those genetic abnormalities because some of them can be the targeted. To date only very few drugs are approved for patients manifesting this group of disorders and there is an urgent need to develop new effective therapies. This review gives an overview of the genetic of MDS and the therapeutic options available and in clinical experimentation.Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, progressive cytopenias and increased risk of transformation to acute myeloid leukemia. The improved understanding of the underlying biology and genetics of MDS has led to better disease and risk classification, paving the way for novel therapeutic opportunities. Indeed, we now have a vast pipeline of targeted agents under pre-clinical and clinical development, potentially able to modify the natural history of the diverse disease spectrum of MDS. Here, we review the latest therapeutic approaches (investigational and approved agents) for MDS treatment. A deep insight will be given to molecularly targeted therapies by reviewing new agents for individualized precision medicine

    How I Manage Transplant Ineligible Patients with Myelodysplastic Neoplasms

    Get PDF
    Myelodysplastic neoplasms, formerly known as myelodysplastic syndromes (MDS), represent a group of clonal disorders characterized by a high degree of clinical and molecular heterogeneity, and an invariable tendency to progress to acute myeloid leukemia. MDS typically present in the elderly with cytopenias of different degrees and bone marrow dysplasia, the hallmarks of the disease. Allogeneic hematopoietic stem cell transplant is the sole curative approach to date. Nonetheless, given the disease's demographics, only a minority of patients can benefit from this procedure. Currently used prognostic schemes such as the Revised International Prognostic Scoring System (R-IPSS), and most recently the molecular IPSS (IPSS-M), guide clinical management by dividing MDS into two big categories: lower- and higher-risk cases, based on a cut-off score of 3.5. The main clinical problem of the lower-risk group is represented by the management of cytopenias, whereas the prevention of secondary leukemia progression is the goal for the latter. Herein, we discuss the non-transplant treatment of MDS, focusing on current practice and available therapeutic options, while also presenting new investigational agents potentially entering the MDS therapeutic arsenal in the near future

    Large Granular Lymphocytic Leukemia: From Immunopathogenesis to Treatment of Refractory Disease

    Get PDF
    Simple Summary Large Granular Lymphocytic Leukemia (LGLL) is a clonal disorder of cytotoxic T-cells. Because of the variety of clinical presentations ranging from the mere presence of lymphocytosis to cytopenias and autoimmune conditions, this rare lymphoma may require treatment to control such manifestations. Although first-line treatments are more established, refractory cases are often managed based on the experience of the attending physician. Herein, we review the pathways involved in the pathogenesis of LGLL, including refractory cases, inferring clues as to the potentially actionable targets. Large Granular Lymphocyte Leukemia (LGLL) is a rare, chronic lymphoproliferative disorder of effector cytotoxic T-cells, and less frequently, natural killer (NK) cells. The disease is characterized by an indolent and often asymptomatic course. However, in roughly 50% of cases, treatment is required due to severe transfusion-dependent anemia, severe neutropenia, or moderate neutropenia with associated recurrent infections. LGLL represents an interesting disease process at the intersection of a physiological immune response, autoimmune disorder, and malignant (clonal) proliferation, resulting from the aberrant activation of cellular pathways promoting survival, proliferation, and evasion of apoptotic signaling. LGLL treatment primarily consists of immunosuppressive agents (methotrexate, cyclosporine, and cyclophosphamide), with a cumulative response rate of about 60% based on longitudinal expertise and retrospective studies. However, refractory cases can result in clinical scenarios characterized by transfusion-dependent anemia and severe neutropenia, which warrant further exploration of other potential targeted treatment modalities. Here, we summarize the current understanding of the immune-genomic profiles of LGLL, its pathogenesis, and current treatment options, and discuss potential novel therapeutic agents, particularly for refractory disease
    • …
    corecore