41 research outputs found

    Identification of Genes and Pathways Regulated by Lamin A in Heart

    Get PDF
    Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies

    Small noncoding differentially methylated copy-number variants, including lncRNA genes, cause a lethal lung developmental disorder

    Get PDF
    An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development

    The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy

    No full text
    RATIONALE:: Mutations in the intercalated disc proteins, such as plakophilin 2 (PKP2), cause arrhythmogenic cardiomyopathy (AC). AC is characterized by the replacement of cardiac myocytes by fibro-adipocytes, cardiac dysfunction, arrhythmias, and sudden death. OBJECTIVE:: To delineate the molecular pathogenesis of AC. METHODS AND RESULTS:: Localization and levels of selected intercalated disc proteins, including signaling molecules, were markedly reduced in human hearts with AC. Altered protein constituents of intercalated discs were associated with activation of the upstream Hippo molecules in the human hearts, in Nkx2.5-Cre:Dsp and Myh6:Jup mouse models of AC, and in the PKP2 knockdown HL-1 myocytes (HL-1). Level of active protein kinase C-α isoform, which requires PKP2 for activity, was reduced. In contrast, neurofibromin 2 (or Merlin), a molecule upstream of the Hippo pathway and that is inactivated by protein kinase C-α isoform, was activated. Consequently, the downstream Hippo molecules mammalian STE20-like protein kinases 1/2 (MST1/2), large tumor suppressor kinases 1/2 (LATS1/2), and Yes-associated protein (YAP) (the latter is the effector of the pathway) were phosphorylated. Coimmunoprecipitation detected binding of phosphorylated YAP, phosphorylated β-catenin, and junction protein plakoglobin (the latter translocated from the junction). RNA sequencing, transcript quantitative polymerase chain reaction, and reporter assays showed suppressed activity of SV40 transcriptional enhancer factor domain (TEAD) and transcription factor 7-like 2 (TCF7L2), which are transcription factors of the Hippo and the canonical Wnt signaling, respectively. In contrast, adipogenesis was enhanced. Simultaneous knockdown of Lats1/2, molecules upstream to YAP, rescued inactivation of YAP and β-catenin and adipogenesis in the HL-1 myocytes. CONCLUSIONS:: Molecular remodeling of the intercalated discs leads to pathogenic activation of the Hippo pathway, suppression of the canonical Wnt signaling, and enhanced adipogenesis in AC. The findings offer novel mechanisms for the pathogenesis of AC. © 2013 American Heart Association, Inc

    DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated with LMNA (Lamin A/C) Mutations

    No full text
    Rationale: Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies. Objective: To gain insights into the molecular pathogenesis of DCM in laminopathies. Methods and Results: We generated a tet-off bigenic mice expressing either a WT (wild type) or a mutant LMNA (D300N) protein in cardiac myocytes. LMNAD300N mutation is associated with DCM in progeroid syndromes. Expression of LMNAD300N led to severe myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. Administration of doxycycline suppressed LMNAD300N expression and prevented the phenotype. Whole-heart RNA sequencing in 2-week-old WT and LMNAD300N mice led to identification of ≈6000 differentially expressed genes. Gene Set Enrichment and Hallmark Pathway analyses predicted activation of E2F (E2F transcription factor), DNA damage response, TP53 (tumor protein 53), NFκB (nuclear factor κB), and TGFβ (transforming growth factor-β) pathways, which were validated by Western blotting, quantitative polymerase chain reaction of selected targets, and immunofluorescence staining. Differentially expressed genes involved cell death, cell cycle regulation, inflammation, and epithelial-mesenchymal differentiation. RNA sequencing of human hearts with DCM associated with defined LMNA pathogenic variants corroborated activation of the DNA damage response/TP53 pathway in the heart. Increased expression of CDKN2A (cyclin-dependent kinase inhibitor 2A)- A downstream target of E2F pathway and an activator of TP53-provided a plausible mechanism for activation of the TP53 pathway. To determine pathogenic role of TP53 pathway in DCM, Tp53 gene was conditionally deleted in cardiac myocytes in mice expressing the LMNAD300N protein. Deletion of Tp53 partially rescued myocardial fibrosis, apoptosis, proliferation of nonmyocyte cells, left ventricular dilatation and dysfunction, and slightly improved survival. Conclusions: Cardiac myocyte-specific expression of LMNAD300N, associated with DCM, led to pathogenic activation of the E2F/DNA damage response/TP53 pathway in the heart and induction of myocardial fibrosis, apoptosis, cardiac dysfunction, and premature death. The findings denote the E2F/DNA damage response/TP53 axis as a responsible mechanism for DCM in laminopathies and as a potential intervention target

    Small noncoding differentially methylated copy-number variants, including IncRNA genes, cause a lethal lung developmental disorder

    No full text
    An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (IncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including IncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific IncRNAgenes. These deletions define a distant cis-regulatory region that harbors, besides lncRNAgenes, also a differentially methylated CpGisland, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. Wesuggest that lung-transcribed 16q24.1 IncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of IncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development
    corecore