4 research outputs found

    Mitochondrial Atp-sensitive K+ Channels As Redox Signals To Liver Mitochondria In Response To Hypertriglyceridemia

    No full text
    We have recently demonstrated that hypertriglyceridemic (HTG) mice present both elevated body metabolic rates and mild mitochondrial uncoupling in the liver owing to stimulated activity of the ATP-sensitive potassium channel (mitoKATP). Because lipid excess normally leads to cell redox imbalance, we examined the hepatic oxidative status in this model. Cell redox imbalance was evidenced by increased total levels of carbonylated proteins, malondialdehydes, and GSSG/GSH ratios in HTG livers compared to wild type. In addition, the activities of the extramitochondrial enzymes NADPH oxidase and xanthine oxidase were elevated in HTG livers. In contrast, Mn-superoxide dismutase activity and content, a mitochondrial matrix marker, were significantly decreased in HTG livers. Isolated HTG liver mitochondria presented lower rates of H2O2 production, which were reversed by mitoKATP antagonists. In vivo antioxidant treatment with N-acetylcysteine decreased both mitoKATP activity and metabolic rates in HTG mice. These data indicate that high levels of triglycerides increase reactive oxygen generation by extramitochondrial enzymes that promote mitoKATP activation. The mild uncoupling mediated by mitoKATP increases metabolic rates and protects mitochondria against oxidative damage. Therefore, a biological role for mitoKATP as a redox sensor is shown here for the first time in an in vivo model of systemic and cellular lipid excess. © 2009 Elsevier Inc. All rights reserved.471014321439Grundy, S.M., Brewer Jr., H.B., Cleeman, J.I., Smith Jr., S.C., Lenfant, C., Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition (2004) Circulation, 109, pp. 433-438Sarwar, N., Danesh, J., Eiriksdottir, G., Sigurdsson, G., Wareham, N., Bingham, S., Boekholdt, S.M., Gudnason, V., Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 western prospective studies (2007) Circulation, 115, pp. 450-458Griendling, K.K., FitzGerald, G.A., Oxidative stress and cardiovascular injury. Part II. Animal and human studies (2003) Circulation, 108, pp. 2034-2040Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Velho, J.A., Vercesi, A.E., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J., 19, pp. 278-280Chisolm, G.M., Steinberg, D., The oxidative modification hypothesis of atherogenesis: an overview (2000) Free Radic. Biol. Med., 28, pp. 1815-1826Baynes, J.W., Role of oxidative stress in development of complications in diabetes (1991) Diabetes, 40, pp. 405-412Ford, E.S., Will, J.C., Bowman, B.A., Narayan, K.M., Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey (1999) Am. J. Epidemiol., 149, pp. 168-176Saxena, R., Madhu, S.V., Shukla, R., Prabhu, K.M., Gambhir, J.K., Postprandial hypertriglyceridemia and oxidative stress in patients of type 2 diabetes mellitus with macrovascular complications (2005) Clin. Chim. Acta, 359, pp. 101-108Cardona, F., Túnez, I., Tasset, I., Garrido-Sánchez, L., Collantes, E., Tinahones, F.J., Circulating antioxidant defences are decreased in healthy people after a high-fat meal (2008) Br. J. Nutr., 100, pp. 312-316Diniz, Y.S., Rocha, K.K., Souza, G.A., Galhardi, C.M., Ebaid, G.M., Rodrigues, H.G., Novelli Filho, J.L., Novelli, E.L., Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats (2006) Eur. J. Pharmacol., 543, pp. 151-157Cardona, F., Tunez, I., Tasset, I., Murri, M., Tinahones, F.J., Similar increase in oxidative stress after fat overload in persons with baseline hypertriglyceridemia with or without the metabolic syndrome (2008) Clin. Biochem., 41, pp. 701-705Schönfeld, P., Wojtczak, L., Fatty acids as modulators of the cellular production of reactive oxygen species (2008) Free Radic. Biol. Med., 45, pp. 231-241Stocker, R., Keaney Jr., J.F., Role of oxidative modifications in atherosclerosis (2004) Physiol. Rev., 84, pp. 1381-1478Hiramatsu, K., Arimori, S., Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes (1998) Diabetes, 37, pp. 832-837Prónai, L., Hiramatsu, K., Saigusa, Y., Nakazawa, H., Low superoxide scavenging activity associated with enhanced superoxide generation by monocytes from male hypertriglyceridemia with and without diabetes (1991) Atherosclerosis, 90, pp. 39-47Roberts, C.K., Barnard, R.J., Sindhu, R.K., Jurczak, M., Ehdaie, A., Vaziri, N.D., Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome (2006) Metabolism, 55, pp. 928-934Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Shimomura, I., Increased oxidative stress in obesity and its impact on metabolic syndrome (2004) J. Clin. Invest., 114, pp. 1752-1761Alberici, L.C., Oliveira, H.C., Bighetti, E.J., de Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J. Bioenerg. Biomembr., 35, pp. 451-457Alberici, L.C., Oliveira, H.C., Patrício, P.R., Kowaltowski, A.J., Vercesi, A.E., Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+channel activity (2006) Gastroenterology, 131, pp. 1228-1234Garlid, K.D., Paucek, P., Mitochondrial potassium transport: the K(+) cycle (2003) Biochim. Biophys. Acta, 1606, pp. 23-41Boveris, A., Mitochondrial production of superoxide radical and hydrogen peroxide (1977) Adv. Exp. Med. Biol., 78, pp. 67-82Skulachev, V.P., Uncoupling: new approaches to an old problem of bioenergetics (1998) Biochim. Biophys. Acta, 1363, pp. 100-124Facundo, H.T., de Paula, J.G., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+channels are redox-sensitive pathways that control reactive oxygen species production (2007) Free Radic. Biol. Med., 42, pp. 1039-1048Bligh, E.G., Dyer, W.J.A., rapid method of total lipid extraction and purification (1959) Can. J. Biochem. Physiol., 37, pp. 911-917Iossa, S., Lionetti, L., Mollica, M.P., Barletta, A., Liverini, G., Oxidative activity in mitochondria isolated from rat liver at different stages of development (1998) Cell Biochem. Funct., 16, pp. 261-268Zhou, M., Diwu, Z., Panchuk-Voloshina, N., Haugland, R.P., A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases (1997) Anal. Biochem., 15, pp. 162-168Beauchamp, C.O., Fridovich, I., Isozymes of superoxide dismutase from wheat germ (1973) Biochim. Biophys. Acta, 317, pp. 50-64Morton, R.L., Ikle, D., White, C.W., Loss of lung mitochondrial aconitase activity due to hyperoxia in bronchopulmonary dysplasia in primates (1998) Am. J. Physiol., 274, pp. 127-133Racker, E., Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids (1950) Biochim. Biophys. Acta, 4, pp. 211-214Stirpe, F., Della Corte, E., The regulation of rat liver xanthine oxidase: conversion of type D (dehydrogenase) into type O (oxidase) by a thermolabile factor, and reversibility by dithioerythritol (1970) Biochim. Biophys. Acta, 212, pp. 195-197Oliveira, C.P., Alves, V.A., Lima, V.M., Stefano, J.T., Debbas, V., Sá, S.V., Wakamatsu, A., Carrilho, F.J., Modulation of hepatic microsomal triglyceride transfer protein (MTP) induced by S-nitroso-N-acetylcysteine in ob/ob mice (2007) Biochem. Pharmacol., 74, pp. 290-297Hissin, P.J., Hilf, R.A., fluorometric method for determination of oxidized and reduced glutathione in tissues (1976) Anal. Biochem., 74, pp. 214-226Reznick, A.Z., Packer, L., Oxidative damage to proteins: spectrophotometric method for the carbonyl assay (1994) Methods Enzymol., 233, pp. 357-363Schild, L., Reinheckel, T., Wiswedel, I., Augustin, W., Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification (1997) Biochem. J., 15, pp. 205-210Calegario, F.F., Cosso, R.G., Fagian, M.M., Almeida, F.V., Jardim, W.F., Jezek, P., Arruda, P., Vercesi, A.E., Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase (2003) J. Bioenerg. Biomembr., 35, pp. 211-220McGarry, J.D., Foster, D.W., Regulation of hepatic fatty acid oxidation and ketone body production. (1980) Annu. Rev. Biochem., 49, pp. 395-420Gardner, P.R., Raineri, I., Epstein, L.B., White, C.W., Superoxide radical and iron modulate aconitase activity in mammalian cells (1995) J. Biol. Chem., 270, pp. 13399-13405Teli, M.R., James, O.F., Burt, A.D., Bennett, M.K., Day, C.P., The natural history of nonalcoholic fatty liver (1995) Hepatology, 22, pp. 1714-1719Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X.X., Pandey, S.K., Bhanot, S., Diehl, A.M., Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis (2007) Hepatology, 45, pp. 1366-1374Leclercq, I.A., Farrell, G.C., Field, J., Bell, D.R., Gonzalez, F.J., Robertson, G.R., CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis (2000) J. Clin. Invest., 105, pp. 1067-1075Cighetti, G., Bortone, L., Sala, S., Allevi, P., Mechanisms of action of malondialdehyde and 4-hydroxynonenal on xanthine oxidoreductase (2001) Arch. Biochem. Biophys., 389, pp. 195-200Pégorier, J.P., Le May, C., Girard, J., Control of gene expression by fatty acids (2004) J. Nutr., 134, pp. 2444S-2449SBakker, S.J., Ijzerman, R.G., Teerlink, T., Westerhoff, H.V., Gans, R.O., Heine, R.J., Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? (2000) Atherosclerosis, 148, pp. 17-21Meilhac, O., Zhou, M., Santanam, N., Parthasarathy, S., Lipid peroxides induce expression of catalase in cultured vascular cells (2000) J. Lipid. Res., 41, pp. 1205-1213Kao, P.F., Lee, W.S., Liu, J.C., Chan, P., Tsai, J.C., Hsu, Y.H., Chang, W.Y., Liao, S.S., Downregulation of superoxide dismutase activity and gene expression in cultured rat brain astrocytes after incubation with vitamin C (2003) Pharmacology, 69, pp. 1-6Povoa Jr., H., Sá, L.D., Lessa, V.M., Xanthine oxidase and triglycerides in serum of patients with hyperlipoproteinemia, type IV (1984) Biomed. Biochim. Acta, 43, pp. 1201-1203Schröder, K., Vecchione, C., Jung, O., Schreiber, J.G., Shiri-Sverdlov, R., van Gorp, P.J., Busse, R., Brandes, R.P., Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet (2006) Free Radic. Biol. Med., 41, pp. 1353-1360Brandes, R.P., Schröder, K., Differential vascular functions of Nox family NADPH oxidases (2008) Curr. Opin. Lipidol., 19, pp. 513-518Hsich, E., Segal, B.H., Pagano, P.J., Rey, F.E., Paigen, B., Deleonardis, J., Hoyt, R.F., Finkel, T., Vascular effects following homozygous disruption of p47(phox): an essential component of NADPH oxidase (2000) Circulation, 101, pp. 1234-1236Csont, T., Bereczki, E., Bencsik, P., Fodor, G., Görbe, A., Zvara, A., Csonka, C., Ferdinandy, P., Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice (2007) Cardiovasc. Res., 76, pp. 100-109Wang, L., Sapuri-Butti, A.R., Aung, H.H., Parikh, A.N., Rutledge, J.C., Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species (2008) Am. J. Physiol. Heart Circ. Physiol., 295, pp. H237-244Zhang, D.X., Chen, Y.F., Campbell, W.B., Zou, A.P., Gross, G.J., Li, P.L., Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels (2001) Circ. Res., 89, pp. 1177-1183Fornazari, M., de Paula, J.G., Castilho, R.F., Kowaltowski, A.J., Redox properties of the adenoside triphosphate-sensitive K+channel in brain mitochondria (2008) J. Neurosci. Res., 86, pp. 1548-1556Anderson, M.E., Glutathione: an overview of biosynthesis and modulation (1998) Chem. Biol. Interact., 111, pp. 1-1

    Toxicity and Carcinogenicity of Metals

    No full text
    corecore