1,402 research outputs found

    On the temperature dependence of ballistic Coulomb drag in nanowires

    Full text link
    We have investigated within the theory of Fermi liquid dependence of Coulomb drag current in a passive quantum wire on the applied voltage VV across an active wire and on the temperature TT for any values of eV/kBTeV/k_BT. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We come to conclusions that 1) within a certain temperature interval the drag current can be a descending function of the temperature TT; 2) the experimentally observed temperature dependence T−0.77T^{-0.77} of the drag current can be interpreted within the framework of Fermi liquid theory; 3) at relatively high applied voltages the drag current as a function of the applied voltage saturates; 4) the screening of the electron potential by metallic gate electrodes can be of importance.Comment: 7 pages, 1 figur

    Whitham systems and deformations

    Full text link
    We consider the deformations of Whitham systems including the "dispersion terms" and having the form of Dubrovin-Zhang deformations of Frobenius manifolds. The procedure is connected with B.A. Dubrovin problem of deformations of Frobenius manifolds corresponding to the Whitham systems of integrable hierarchies. Under some non-degeneracy requirements we suggest a general scheme of the deformation of the hyperbolic Whitham systems using the initial non-linear system. The general form of the deformed Whitham system coincides with the form of the "low-dispersion" asymptotic expansions used by B.A. Dubrovin and Y. Zhang in the theory of deformations of Frobenius manifolds.Comment: 27 pages, Late

    Analytic model for a frictional shallow-water undular bore

    Get PDF
    We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by friction. This is derived in Riemann variables using a modified finite-gap integration technique for the AKNS scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.Comment: 24 page

    Bilinear identities on Schur symmetric functions

    Full text link
    A series of bilinear identities on the Schur symmetric functions is obtained with the use of Pluecker relations.Comment: Accepted to Journal of Nonlinear Mathematical Physics. A reference to a connected result is adde

    Giant Oscillations of Acoustoelectric Current in a Quantum Channel

    Full text link
    A theory of d.c. electric current induced in a quantum channel by a propagating surface acoustic wave (acoustoelectric current) is worked out. The first observation of the acoustoelectric current in such a situation was reported by J. M. Shilton et al., Journ. Phys. C (to be published). The authors observed a very specific behavior of the acoustoelectric current in a quasi-one-dimensional channel defined in a GaAs-AlGaAs heterostructure by a split-gate depletion -- giant oscillations as a function of the gate voltage. Such a behavior was qualitatively explained by an interplay between the energy-momentum conservation law for the electrons in the upper transverse mode with a finite temperature splitting of the Fermi level. In the present paper, a more detailed theory is developed, and important limiting cases are considered.Comment: 7 pages, 2 Postscript figures, RevTeX 3.

    Weyl approach to representation theory of reflection equation algebra

    Full text link
    The present paper deals with the representation theory of the reflection equation algebra, connected with a Hecke type R-matrix. Up to some reasonable additional conditions the R-matrix is arbitrary (not necessary originated from quantum groups). We suggest a universal method of constructing finite dimensional irreducible non-commutative representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed which are parametrized by Young diagrams. The spectrum of central elements s(k)=Tr_q(L^k) is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into the direct sum of irreducible components is also suggested.Comment: LaTeX2e file, 27 pages, no figure

    Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion and dissipation

    Full text link
    Dynamics of interacting cold atomic gases have recently become a focus of both experimental and theoretical studies. Often cold atom systems show hydrodynamic behavior and support the propagation of nonlinear dispersive waves. Although this propagation depends on many details of the system, a great insight can be obtained in the rather universal limit of weak nonlinearity, dispersion and dissipation (WNDD). In this limit, using a reductive perturbation method we map some of the hydrodynamic models relevant to cold atoms to well known chiral one-dimensional equations such as KdV, Burgers, KdV-Burgers, and Benjamin-Ono equations. These equations have been thoroughly studied in literature. The mapping gives us a simple way to make estimates for original hydrodynamic equations and to study the interplay between nonlinearity, dissipation and dispersion which are the hallmarks of nonlinear hydrodynamics.Comment: 18 pages, 3 figures, 1 tabl

    Field-induced transition from parallel to perpendicular parametric pumping for a microstrip transducer

    Full text link
    Microstrip transducers used for the excitation of spin waves in magnetic films possess two characteristic properties: high spatial localization of the microwave magnetic field and the presence of field components parallel and perpendicular to the bias field. Here, the effects of these features on the process of parametric pumping are presented. By microwave measurements of the spin-wave instability threshold a transition from parallel pumping to perpendicular pumping at the critical field HcH_{\rm c} with the minimal threshold is observed. This transition is accompanied by a sharp threshold increase above the critical field due to the spatial confinement of the pump region.Comment: 4 pages, 2 figure

    Coulomb drag between ballistic one-dimensional electron systems

    Full text link
    The presence of pronounced electronic correlations in one-dimensional systems strongly enhances Coulomb coupling and is expected to result in distinctive features in the Coulomb drag between them that are absent in the drag between two-dimensional systems. We review recent Fermi and Luttinger liquid theories of Coulomb drag between ballistic one-dimensional electron systems, and give a brief summary of the experimental work reported so far on one-dimensional drag. Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a maximum of the drag resistance R_D when the one-dimensional subbands of the two quantum wires are aligned and the Fermi wave vector k_F is small, and also an exponential decay of R_D with increasing inter-wire separation, both features confirmed by experimental observations. A crucial difference between the two theoretical models emerges in the temperature dependence of the drag effect. Whereas the FL theory predicts a linear temperature dependence, the LL theory promises a rich and varied dependence on temperature depending on the relative magnitudes of the energy and length scales of the systems. At higher temperatures, the drag should show a power-law dependence on temperature, R_D \~ T^x, experimentally confirmed in a narrow temperature range, where x is determined by the Luttinger liquid parameters. The spin degree of freedom plays an important role in the LL theory in predicting the features of the drag effect and is crucial for the interpretation of experimental results.Comment: 25 pages, 14 figures, to appear in Semiconductor Science and Technolog
    • …
    corecore