26 research outputs found

    The Heavy-Tail Phenomenon in SGD

    Full text link
    In recent years, various notions of capacity and complexity have been proposed for characterizing the generalization properties of stochastic gradient descent (SGD) in deep learning. Some of the popular notions that correlate well with the performance on unseen data are (i) the `flatness' of the local minimum found by SGD, which is related to the eigenvalues of the Hessian, (ii) the ratio of the stepsize η\eta to the batch-size bb, which essentially controls the magnitude of the stochastic gradient noise, and (iii) the `tail-index', which measures the heaviness of the tails of the network weights at convergence. In this paper, we argue that these three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure of the Hessian of the loss at the minimum, and the choices of the algorithm parameters η\eta and bb, the SGD iterates will converge to a \emph{heavy-tailed} stationary distribution. We rigorously prove this claim in the setting of quadratic optimization: we show that even in a simple linear regression problem with independent and identically distributed data whose distribution has finite moments of all order, the iterates can be heavy-tailed with infinite variance. We further characterize the behavior of the tails with respect to algorithm parameters, the dimension, and the curvature. We then translate our results into insights about the behavior of SGD in deep learning. We support our theory with experiments conducted on synthetic data, fully connected, and convolutional neural networks

    Differentially Private Accelerated Optimization Algorithms

    Full text link
    We present two classes of differentially private optimization algorithms derived from the well-known accelerated first-order methods. The first algorithm is inspired by Polyak's heavy ball method and employs a smoothing approach to decrease the accumulated noise on the gradient steps required for differential privacy. The second class of algorithms are based on Nesterov's accelerated gradient method and its recent multi-stage variant. We propose a noise dividing mechanism for the iterations of Nesterov's method in order to improve the error behavior of the algorithm. The convergence rate analyses are provided for both the heavy ball and the Nesterov's accelerated gradient method with the help of the dynamical system analysis techniques. Finally, we conclude with our numerical experiments showing that the presented algorithms have advantages over the well-known differentially private algorithms.Comment: 28 pages, 4 figure

    Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent

    Full text link
    Algorithmic stability is an important notion that has proven powerful for deriving generalization bounds for practical algorithms. The last decade has witnessed an increasing number of stability bounds for different algorithms applied on different classes of loss functions. While these bounds have illuminated various properties of optimization algorithms, the analysis of each case typically required a different proof technique with significantly different mathematical tools. In this study, we make a novel connection between learning theory and applied probability and introduce a unified guideline for proving Wasserstein stability bounds for stochastic optimization algorithms. We illustrate our approach on stochastic gradient descent (SGD) and we obtain time-uniform stability bounds (i.e., the bound does not increase with the number of iterations) for strongly convex losses and non-convex losses with additive noise, where we recover similar results to the prior art or extend them to more general cases by using a single proof technique. Our approach is flexible and can be generalizable to other popular optimizers, as it mainly requires developing Lyapunov functions, which are often readily available in the literature. It also illustrates that ergodicity is an important component for obtaining time-uniform bounds -- which might not be achieved for convex or non-convex losses unless additional noise is injected to the iterates. Finally, we slightly stretch our analysis technique and prove time-uniform bounds for SGD under convex and non-convex losses (without additional additive noise), which, to our knowledge, is novel.Comment: 49 pages, NeurIPS 202
    corecore