29 research outputs found

    The Holographic Dictionary for Beta Functions of Multi-trace Coupling Constants

    Get PDF
    Field theories with weakly coupled holographic duals, such as large N gauge theories, have a natural separation of their operators into `single-trace operators' (dual to single-particle states) and `multi-trace operators' (dual to multi-particle states). There are examples of large N gauge theories where the beta functions of single-trace coupling constants all vanish, but marginal multi-trace coupling constants have non-vanishing beta functions that spoil conformal invariance (even when all multi-trace coupling constants vanish). The holographic dual of such theories should be a classical solution in anti-de Sitter space, in which the boundary conditions that correspond to the multi-trace coupling constants depend on the cutoff scale, in a way that spoils conformal invariance. We argue that this is realized through specific bulk coupling constants that lead to a running of the multi-trace coupling constants. This fills a missing entry in the holographic dictionary.Comment: 31 pages. v2: added references. v3: added references, JHEP versio

    The Thermal Free Energy in Large N Chern-Simons-Matter Theories

    Full text link
    We compute the thermal free energy in large N U(N) Chern-Simons-matter theories with matter fields (scalars and/or fermions) in the fundamental representation, in the large temperature limit. We note that in these theories the eigenvalue distribution of the holonomy of the gauge field along the thermal circle does not localize even at very high temperatures, and this affects the computation significantly. We verify that our results are consistent with the conjectured dualities between Chern-Simons-matter theories with scalar fields and with fermion fields, as well as with the strong-weak coupling duality of the N=2 supersymmetric Chern-Simons-matter theory.Comment: 41 pages, 8 figures. v2: minor corrections, added references. v3: added pdfoutpu

    Three-Prong Distribution of Massive Narrow QCD Jets

    Full text link
    We study the planar-flow distributions of narrow, highly boosted, massive QCD jets. Using the factorization properties of QCD in the collinear limit, we compute the planar-flow jet function from the one-to-three splitting function at tree-level. We derive the leading-log behavior of the jet function analytically. We also compare our semi-analytic jet function with parton-shower predictions using various generators.Comment: 59 pages, 9 figure

    d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories

    Full text link
    We study three dimensional O(N)_k and U(N)_k Chern-Simons theories coupled to a scalar field in the fundamental representation, in the large N limit. For infinite k this is just the singlet sector of the O(N) (U(N)) vector model, which is conjectured to be dual to Vasiliev's higher spin gravity theory on AdS_4. For large k and N we obtain a parity-breaking deformation of this theory, controlled by the 't Hooft coupling lambda = 4 \pi N / k. For infinite N we argue (and show explicitly at two-loop order) that the theories with finite lambda are conformally invariant, and also have an exactly marginal (\phi^2)^3 deformation. For large but finite N and small 't Hooft coupling lambda, we show that there is still a line of fixed points parameterized by the 't Hooft coupling lambda. We show that, at infinite N, the interacting non-parity-invariant theory with finite lambda has the same spectrum of primary operators as the free theory, consisting of an infinite tower of conserved higher-spin currents and a scalar operator with scaling dimension \Delta=1; however, the correlation functions of these operators do depend on lambda. Our results suggest that there should exist a family of higher spin gravity theories, parameterized by lambda, and continuously connected to Vasiliev's theory. For finite N the higher spin currents are not conserved.Comment: 34 pages, 29 figures. v2: added reference

    Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions

    Full text link
    We consider the conformal field theory of N complex massless scalars in 2+1 dimensions, coupled to a U(N) Chern-Simons theory at level k. This theory has a 't Hooft large N limit, keeping fixed \lambda = N/k. We compute some correlation functions in this theory exactly as a function of \lambda, in the large N (planar) limit. We show that the results match with the general predictions of Maldacena and Zhiboedov for the correlators of theories that have high-spin symmetries in the large N limit. It has been suggested in the past that this theory is dual (in the large N limit) to the Legendre transform of the theory of fermions coupled to a Chern-Simons gauge field, and our results allow us to find the precise mapping between the two theories. We find that in the large N limit the theory of N scalars coupled to a U(N)_k Chern-Simons theory is equivalent to the Legendre transform of the theory of k fermions coupled to a U(k)_N Chern-Simons theory, thus providing a bosonization of the latter theory. We conjecture that perhaps this duality is valid also for finite values of N and k, where on the fermionic side we should now have (for N_f flavors) a U(k)_{N-N_f/2} theory. Similar results hold for real scalars (fermions) coupled to the O(N)_k Chern-Simons theory.Comment: 49 pages, 16 figures. v2: added reference
    corecore