14 research outputs found

    Effect of Surgical Fusion on Volitional Weight-Shifting in Individuals With Adolescent Idiopathic Scoliosis

    Get PDF
    Study Design Prospective. Objectives The goals of this study were to (1) evaluate the differences in weightbearing symmetry between individuals with adolescent idiopathic scoliosis (AIS) and typically developing controls; (2) observe the effect of posterior spinal fusion and instrumentation (PSFI) on volitional weight-shifting at 1 and 2 years postoperatively; and (3) evaluate whether lowest instrumented fusion level (ie, lowest instrumented vertebra [LIV]) in PSFI has an effect on volitional weight-shifting. Summary of Background Data Previous studies have conflicting findings with regard to the effect of scoliosis on postural control tasks as well as the effect of surgery. They have also noted an inconsistent effect of PSFI at different LIVs, with more distal LIVs exhibiting greater reductions in postoperative range of motion. Methods The study was designed with an AIS group of 41 patients (8 males and 33 females) with AIS who underwent PSFI, along with a Control Group of 24 age-matched typically developing participants (12 male and 12 female). Both groups performed postural control tasks (static balance and volitional weight-shifting), with the AIS group repeating the tasks at 1 and 2 years postoperatively. Results At baseline, the AIS group showed increased weightbearing asymmetry than the Control Group (p = .01). The AIS group showed improvements in volitional weight-shifting at 2 years over baseline (p \u3c .01). There was no effect of LIV on volitional weight-shifting by the second postoperative year. Conclusions Individuals with AIS have greater weightbearing asymmetry but improved volitional weight-shifting over typically developing controls. PSFI improves volitional weight-shifting beyond preoperative baseline but does not differ significantly by LIV

    Effect of Surgical Fusion on Volitional Weight-Shifting in Individuals With Adolescent Idiopathic Scoliosis

    Get PDF
    Study Design Prospective. Objectives The goals of this study were to (1) evaluate the differences in weightbearing symmetry between individuals with adolescent idiopathic scoliosis (AIS) and typically developing controls; (2) observe the effect of posterior spinal fusion and instrumentation (PSFI) on volitional weight-shifting at 1 and 2 years postoperatively; and (3) evaluate whether lowest instrumented fusion level (ie, lowest instrumented vertebra [LIV]) in PSFI has an effect on volitional weight-shifting. Summary of Background Data Previous studies have conflicting findings with regard to the effect of scoliosis on postural control tasks as well as the effect of surgery. They have also noted an inconsistent effect of PSFI at different LIVs, with more distal LIVs exhibiting greater reductions in postoperative range of motion. Methods The study was designed with an AIS group of 41 patients (8 males and 33 females) with AIS who underwent PSFI, along with a Control Group of 24 age-matched typically developing participants (12 male and 12 female). Both groups performed postural control tasks (static balance and volitional weight-shifting), with the AIS group repeating the tasks at 1 and 2 years postoperatively. Results At baseline, the AIS group showed increased weightbearing asymmetry than the Control Group (p = .01). The AIS group showed improvements in volitional weight-shifting at 2 years over baseline (p \u3c .01). There was no effect of LIV on volitional weight-shifting by the second postoperative year. Conclusions Individuals with AIS have greater weightbearing asymmetry but improved volitional weight-shifting over typically developing controls. PSFI improves volitional weight-shifting beyond preoperative baseline but does not differ significantly by LIV

    Effects of Spinal Fusion for Idiopathic Scoliosis on Lower Body Kinematics During Gait

    Get PDF
    Objectives The purpose of this study was to compare gait among patients with scoliosis undergoing posterior spinal fusion and instrumentation (PSFI) to typically developing subjects and determine if the location of the lowest instrumented vertebra impacted results. Summary of Background Data PSFI is the standard of care for correcting spine deformities, allowing the preservation of body equilibrium while maintaining as many mobile spinal segments as possible. The effect of surgery on joint motion distal to the spine must also be considered. Very few studies have addressed the effect of PSFI on activities such as walking and even fewer address how surgical choice of the lowest instrumented vertebra (LIV) influences possible motion reduction. Methods Individuals with scoliosis undergoing PSFI (n = 38) completed gait analysis preoperatively and at postoperative years 1 and 2 along with a control group (n = 24). Comparisons were made with the control group at each time point and between patients fused at L2 and above (L2+) versus L3 and below (L3–). Results The kinematic results of the AIS group showed some differences when compared to the Control Group, most notably decreased range of motion (ROM) in pelvic tilt and trunk lateral bending. When comparing the LIV groups, only minor differences were observed, and the results showed decreased coronal trunk and pelvis ROM at the one-year visit and decreased hip rotation ROM at the two-year visit in the L3– group. Conclusions Patients with AIS showed decreased ROM preoperatively with further decreases postoperatively. These changes remained relatively consistent following the two-year visit, indicating that most kinematic changes occurred in the first year following surgery. Limited functional differences between the two LIV groups may be due to the lack of full ROM used during normal gait, and future work could address tasks that use greater ROM

    Effect of Lowest Instrumented Vertebra on Trunk Mobility in Patients With Adolescent Idiopathic Scoliosis Undergoing a Posterior Spinal Fusion

    Get PDF
    Study Design Prospective. Objectives The goal of this study was to evaluate the effect of posterior spinal fusion surgery terminating at different lowest instrumented vertebrae (LIV) on trunk mobility in individuals with adolescent idiopathic scoliosis (AIS). Summary of Background Data Posterior spinal fusion with instrumentation is the standard surgical technique employed in AIS for correcting spine deformities with Cobb angles exceeding 50°. Surgical correction of curve deformity reduces trunk mobility and range of motion. However, conflicting findings from previous studies investigating the impact of different LIV levels on the reduction in trunk mobility after surgery have been reported. Methods The study was designed as a prospective study with 47 patients (7 males and 40 females) with AIS who underwent posterior spinal fusion. Patients were classified into 5 groups based on their surgical LIV level (ie, T12, L1, L2, L3, and L4). Trunk flexion-extension (sagittal plane), lateral bending (coronal plane), and axial rotation (transverse plane) kinematics were assessed during preoperative, 1 year postoperative, and 2 years postoperative evaluation visits. Results There were postoperative reductions of 41%, 51%, and 59% in trunk range of motion in the sagittal, coronal, and transverse planes, respectively (p \u3c .0001). A trend toward greater postoperative reductions in peak forward flexion at more distal LIVs was observed (p = .04). Conclusions Fusion reduces trunk mobility in the sagittal, coronal, and transverse planes. More distal LIV fusions limit peak forward flexion to a greater extent which is considered clinically significant. After fusion, the reductions seen in axial rotation, lateral bending, and backward extension do not differ significantly at more distal LIVs

    Design and Simulation of Message Display on LCD Integrated with Power Line Carrier Communication Modem with Biometrics System

    No full text
    This paper serves a new technology for communication field. As we know that in this era many of the research is going on in communication filed.Main motto of the researcher is to reduce the interference and loss etc. In this paper we developed a circuit which can be helpful to sending the data via exiting wire line (220-230 AC) with very low power consumption and very low data losses in optimum cost. Yet we facing few problems in hill area where it is very tough to align the tower of transmitting signal (provided by the different service provider).As concern to cost it is not possible to install tower or repeater (cost of repeater is approx. 1000 $) everywhere in such type of area.It is possible to install such type of modem where it is not possible to send the data wirelessly or in high expenditure. We are sending the messag

    Combating Fake News: Stakeholder Interventions and Potential Solutions

    No full text
    The fake news “infodemic”, facilitated by social media and mobile message sharing platforms, has progressed from causing a nuisance to seriously impacting law and order through deliberate and large-scale manipulation of public sentiments. There are social, religious, political, and economic dimensions to the fake news phenomenon, providing enough motivation for interested parties to push biased opinions, claims, conspiracies and fraud to many naïve information consumers. The ease with which fake news can be created and propagated makes it extremely challenging to detect and mitigate. To combat the fake news, the researchers have utilized mechanisms which are largely based on Artificial Intelligence (AI) algorithms and social network analysis. However, no viable solution has yet been deployed at a scale. This paper present a comprehensive survey on combating fake news and evaluates the challenges involved in its detection with the help of existing detection mechanisms and techniques to control its spread. The challenges associated with combating fake news have been addressed based on the various aspects such as psychological, economic, and technical. Furthermore, we consider the fake news combat spectrum to analyze the stakeholder interventions due to the spread of fake news. Finally, various technology-based solutions have been presented for combating fake news and the associated future challenges and opportunities

    Biological evaluation of novel side chain containing CQTrICh-analogs as antimalarials and their development as PfCDPK1 kinase inhibitors

    No full text
    The rapid emergence of resistance to existing frontline antimalarial drugs emphasizes a need for the development of target-oriented molecules with novel modes of action. Given the importance of a plant-like Calcium-Dependent Protein Kinase 1 (PfCDPK1) as a stand-alone multistage signalling regulator of P. falciparum, we designed and synthesized 7-chloroquinoline-indole-chalcones tethered with a triazole (CQTrICh-analogs 7 (a–s) and 9) directed towards PfCDPK1. This was accomplished by reacting substituted 1-phenyl-3-(1-(prop-2-yn-1-yl)-1H-indol-3-yl) prop-2-en-1-one and 1-(prop-2-yn-1-yl)-1H-indole-3-carbaldehyde with 4-azido-7-chloroquinoline, respectively via a ‘click’ reaction. The selected CQTrICh-analogs: 7l and 7r inhibited the growth of chloroquine-sensitive 3D7 strain and -resistant RKL-9 isolate of Plasmodium falciparum, with IC50 values of 2.4 μM & 1.8 μM (7l), and 3.5 μM & 2.7 μM (7r), respectively, and showed no apparent hemolytic activity and cytotoxicity in mammalian cells. Intra-erythrocytic progression studies revealed that the active hybrids: 7l and 7r are effective against the mature stages of the parasite. 7l and 7r were found to stably interact with the catalytically active ATP-binding pocket of PfCDPK1 via energetically favourable H-bonds. The interaction was confirmed in vitro by microscale thermophoresis and kinase assays, which demonstrated that the active hybrids interact with PfCDPK1 and inhibit its kinase activity which is presumably responsible for the parasite growth inhibition. Interestingly, 7l and 7r showed no inhibitory effect on the human kinases, indicating their selectivity for the parasite kinase. We report the antiplasmodial potential of novel kinase-targeting bio-conjugates, a step towards developing pan-kinase inhibitors which is a prerequisite for multistage anti-malarial protection
    corecore