1,304 research outputs found

    Spectrum of the SU(3) Dirac operator on the lattice: Transition from random matrix theory to chiral perturbation theory

    Get PDF
    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.Comment: 8 pages, RevTeX, 15 .eps figure

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy

    Real and imaginary chemical potential in 2-color QCD

    Full text link
    In this paper we study the finite temperature SU(2) gauge theory with staggered fermions for non-zero imaginary and real chemical potential. The method of analytical continuation of Monte Carlo results from imaginary to real chemical potential is tested by comparison with simulations performed {\em directly} for real chemical potential. We discuss the applicability of the method in the different regions of the phase diagram in the temperature -- imaginary chemical potential plane.Comment: 15 pages, 7 figures; a few comments added; version published on Phys. Rev.

    A numerical reinvestigation of the Aoki phase with N_f=2 Wilson fermions at zero temperature

    Get PDF
    We report on a numerical reinvestigation of the Aoki phase in lattice QCD with two flavors of Wilson fermions where the parity-flavor symmetry is spontaneously broken. For this purpose an explicitly symmetry-breaking source term hψˉiÎł5τ3ψh\bar{\psi} i \gamma_{5} \tau^{3}\psi was added to the fermion action. The order parameter was computed with the Hybrid Monte Carlo algorithm at several values of (ÎČ,Îș,h)(\beta,\kappa,h) on lattices of sizes 444^4 to 12412^4 and extrapolated to h=0h=0. The existence of a parity-flavor breaking phase can be confirmed at ÎČ=4.0\beta=4.0 and 4.3, while we do not find parity-flavor breaking at ÎČ=4.6\beta=4.6 and 5.0.Comment: 8 pages, 5 figures, Revised version as to be published in Phys.Rev.

    Four Zero Texture Fermion Mass Matrices in SO(10) GUT

    Full text link
    We attempt the integration of the phenomenologically successful four zero texture of fermion mass matrices with the renormalizable SO(10) GUT. The resulting scenario is found to be highly predictive. Firstly, we examine the phenomenological implications of a class of the lepton mass matrices with parallel texture structures and obtain interesting constraints on the parameters of the charged lepton and the neutrino mass matrices. We combine these phenomenological constraints with the constraints obtained from SO(10) GUT to reduce the number of the free parameters and to further constrain the allowed ranges of the free parameters. The solar/atmospheric mixing angles obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl

    Reconciling safe planetary targets and planetary justice: Why should social scientists engage with planetary targets?

    Get PDF
    As human activity threatens to make the planet unsafe for humanity and other life forms, scholars are identifying planetary targets set at a safe distance from biophysical thresholds beyond which critical Earth systems may collapse. Yet despite the profound implications that both meeting and transgressing such targets may have for human wellbeing, including the potential for negative trade-offs, there is limited social science analysis that systematically considers the justice dimensions of such targets. Here we assess a range of views on planetary justice and present three arguments associated with why social scientists should engage with the scholarship on safe targets. We argue that complementing safe targets with just targets offers a fruitful approach for considering synergies and trade-offs between environmental and social aspirations and can inform inclusive deliberation on these important issues

    B_s --> mu+ mu- decay in the R-parity violating minimal supergravity

    Full text link
    We study B_s --> mu+ mu- in the context of the R-parity violating minimal supergravity in the high tan beta regime. We find that the lowest value of the branching ratio can go well below the present LHCb sensitivity and hence B_s --> mu+ mu- can even be invisible to the LHC. We also find that the present upper bound on Br(B_s --> mu+ mu-) puts strong constraint on the minimal supergravity parameter space. The constraints become more severe if the upper bound is close to its standard model prediction.Comment: 18 pages, 10 figures; version to be published in European Physical Journal

    Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    Get PDF
    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration
    • 

    corecore