50,360 research outputs found

    An Efficient Analytical Solution to Thwart DDoS Attacks in Public Domain

    Full text link
    In this paper, an analytical model for DDoS attacks detection is proposed, in which propagation of abrupt traffic changes inside public domain is monitored to detect a wide range of DDoS attacks. Although, various statistical measures can be used to construct profile of the traffic normally seen in the network to identify anomalies whenever traffic goes out of profile, we have selected volume and flow measure. Consideration of varying tolerance factors make proposed detection system scalable to the varying network conditions and attack loads in real time. NS-2 network simulator on Linux platform is used as simulation testbed. Simulation results show that our proposed solution gives a drastic improvement in terms of detection rate and false positive rate. However, the mammoth volume generated by DDoS attacks pose the biggest challenge in terms of memory and computational overheads as far as monitoring and analysis of traffic at single point connecting victim is concerned. To address this problem, a distributed cooperative technique is proposed that distributes memory and computational overheads to all edge routers for detecting a wide range of DDoS attacks at early stage.Comment: arXiv admin note: substantial text overlap with arXiv:1203.240

    Aharonov-Bohm effect in the presence of evanescent modes

    Full text link
    It is known that differential magnetoconductance of a normal metal loop connected to reservoirs by ideal wires is always negative when an electron travels as an evanescent modes in the loop. This is in contrast to the fact that the magnetoconductance for propagating modes is very sensitive to small changes in geometric details and the Fermi energy and moreover it can be positive as well as negative. Here we explore the role of impurities in the leads in determining the magnetoconductance of the loop. We find that the change in magnetoconductance is negative and can be made large provided the impurities do not create resonant states in the systems. This theoretical finding may play an useful role in quantum switch operations.Comment: 9 figures available on reques

    Comparison of Canonical and Grand Canonical Models for selected multifragmentation data

    Get PDF
    Calculations for a set of nuclear multifragmentation data are made using a Canonical and a Grand Canonical Model. The physics assumptions are identical but the Canonical Model has an exact number of particles, whereas, the Grand Canonical Model has a varying number of particles, hence, is less exact. Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure

    Controlling hysteresis in superconducting constrictions with a resistive shunt

    Full text link
    We demonstrate control of the thermal hysteresis in superconducting constrictions by adding a resistive shunt. In order to prevent thermal relaxation oscillations, the shunt resistor is placed in close vicinity of the constriction, making the inductive current-switching time smaller than the thermal equilibration time. We investigate the current-voltage characteristics of the same constriction with and without the shunt-resistor. The widening of the hysteresis-free temperature range is explained on the basis of a simple model.Comment: 6 pages, 7 figures, including Supplementary Informatio
    corecore