251 research outputs found

    Multi-wavelength Intra-day Variability and Quasi-periodic Oscillation in Blazars

    Full text link
    We reviewed multi-wavelength blazars variability and detection of quasi-periodic oscillations on intra-day timescales. The variability timescale from few minutes to up to less than a days is commonly known as intra-day variability. These fast variations are extremely useful to constrain the size of emitting region, black hole mass estimation, etc. It is noticed that in general blazars show intra-day variability in the complete electromagnetic spectrum. But some class of blazars either do not show or show very little intra-day variability in a specific band of electromagnetic spectrum. Blazars show rarely quasi-periodic oscillations in time series data in optical and X-ray bands. Other properties and emission mechanism of blazars are also briefly discussed.Comment: Invited Review; Submitted to Galaxies; a special issue on Microvariability of Blazar

    X-ray Flux and Spectral Variability of the TeV Blazars Mrk 421 and PKS 2155-304

    Full text link
    We reviewed X-ray flux and spectral variability properties studied to date by various X-ray satellites for Mrk 421 and PKS 2155-304, which are TeV emitting blazars. Mrk 421 and PKS 2155-304 are the most X-ray luminous blazars in the northern and southern hemispheres, respectively. Blazars show flux and spectral variabilities in the complete electromagnetic spectrum on diverse timescales ranging from a few minutes to hours, days, weeks, months and even several years. The flux and spectral variability on different timescales can be used to constrain the size of the emitting region, estimate the super massive black hole mass, find the dominant emission mechanism in the close vicinity of the super massive black hole, search for quasi-periodic oscillations in time series data and~several other physical parameters of blazars. Flux and spectral variability is also a dominant tool to explain jet as well as disk emission from blazars at different epochs of observations.Comment: 15 pages, Published in the special issue "X-Ray Flux and Spectral Variability of Blazars" of Galaxies Journa

    X-ray Intraday Variability of Five TeV Blazars with NuSTAR

    Get PDF
    We have examined 40 NuSTAR light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650 and PKS 2155-304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3-79 keV. Using an auto correlation function analysis we searched for intraday variability timescales in these LCs and found indications of several between 2.5 and 32.8 ks in eight LCs of Mrk 421, a timescale around 8.0 ks for one LC of Mrk 501, and timescales of 29.6 ks and 57.4 ks in two LCs of PKS 2155-304. The other two blazars' LCs do not show any evidence for intraday variability timescales shorter than the lengths of those observations, however, the data was both sparser and noisier, for them. We found positive correlations with zero lag between soft (3-10 keV) and hard (10-79 keV) bands for most of the LCs, indicating that their emissions originate from the same electron population. We examined spectral variability using a hardness ratio analysis and noticed a general "harder-when-brighter" behavior. The 22 LCs of Mrk 421 observed between July 2012 and April 2013 show that this source was in a quiescent state for an extended period of time and then underwent an unprecedented double peaked outburst while monitored on a daily basis during 10 - 16 April 2013. We briefly discuss models capable of explaining these blazar emissions.Comment: 21 pages, 4 figures, 4 tables, Accepted for Publication in Ap

    Multi-wavelength Temporal Variability of the Blazar 3C 454.3 during 2014 Activity Phase

    Full text link
    We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high γ\gamma-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the \emph{SMARTS} facility and the source is detected continuously on daily timescale in the \emph{Fermi}-LAT γ\gamma-ray band. The source exhibits diverse levels of variability with many flaring/active states in the continuously sampled γ\gamma-ray light curve which are also reflected in the NIR-optical light curves and the sparsely sampled X-ray light curve by the \emph{Swift}-XRT. Multi-band correlation analysis of this continuous segment during different activity periods shows a change of state from no lags between IR and γ\gamma-ray, optical and γ\gamma-ray, and IR and optical to a state where γ\gamma-ray lags the IR/optical by ∼\sim3 days. The results are consistent with the previous studies of the same during various γ\gamma-ray flaring and active episodes of the source. This consistency, in turn, suggests an extended localized emission region with almost similar conditions during various γ\gamma-ray activity states. On the other hand, the delay of γ\gamma-ray with respect to IR/optical and a trend similar to IR/optical in X-rays along with strong broadband correlations favor magnetic field related origin with X-ray and γ\gamma-ray being inverse Comptonized of IR/optical photons and external radiation field, respectively.Comment: 15 pages, 5 figures, 1 table, MNRAS accepte

    Statistical analysis of variability properties of the Kepler blazar W2R 1926+42

    Full text link
    We analyzed Kepler light curves of the blazar W2R 1926+42 that provided nearly continuous coverage from quarter 11 through quarter 17 (589 days between 2011 and 2013) and examined some of their flux variability properties. We investigate the possibility that the light curve is dominated by a large number of individual flares and adopt exponential rise and decay models to investigate the symmetry properties of flares. We found that those variations of W2R 1926+42 are predominantly asymmetric with weak tendencies toward positive asymmetry (rapid rise and slow decay). The durations (D) and the amplitudes (F0) of flares can be fit with log-normal distributions. The energy (E) of each flare is also estimated for the first time. There are positive correlations between logD and logE with a slope of 1.36, and between logF0 and logE with a slope of 1.12. Lomb-Scargle periodograms are used to estimate the power spectral density (PSD) shape. It is well described by a power law with an index ranging between -1.1 and -1.5. The sizes of the emission regions, R, are estimated to be in the range of 1.1*10^15 cm - 6.6*10^16 cm. The flare asymmetry is difficult to explain by a light travel time effect but may be caused by differences between the timescales for acceleration and dissipation of high-energy particles in the relativistic jet. A jet-in-jet model also could produce the observed log-normal distributions
    • …
    corecore