88 research outputs found

    Correlated Emission of Hadrons from Recombination of Correlated Partons

    Full text link
    We discuss different sources of hadron correlations in relativistic heavy ion collisions. We show that correlations among partons in a quasi-thermal medium can lead to the correlated emission of hadrons by quark recombination and argue that this mechanism offers a plausible explanation for the dihadron correlations in the few GeV/c momentum range observed in Au+Au collisions at RHIC.Comment: 4 pages, 2 figures; v2: typo on p.4 correcte

    Hadronization in heavy ion collisions: Recombination and fragmentation of partons

    Full text link
    We argue that the emission of hadrons with transverse momentum up to about 5 GeV/c in central relativistic heavy ion collisions is dominated by recombination, rather than fragmentation of partons. This mechanism provides a natural explanation for the observed constant baryon-to-meson ratio of about one and the apparent lack of a nuclear suppression of the baryon yield in this momentum range. Fragmentation becomes dominant at higher transverse momentum, but the transition point is delayed by the energy loss of fast partons in dense matter.Comment: 4 pages, 2 figures; v2: reference [8] added; v3: Eq.(2) corrected, two references added, version to appear in PR

    Recombination Models

    Full text link
    We review the current status of recombination and coalescence models that have been successfully applied to describe hadronization in heavy ion collisions at RHIC energies. Basic concepts as well as actual implementations of the idea are discussed. We try to evaluate where we stand in our understanding at the moment and what remains to be done in the future.Comment: Plenary Talk at Quark Matter 2004, submitted to J. Phys. G, 8 pages, 3 figure

    Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase

    Full text link
    We discuss hadron production in heavy ion collisions at RHIC. We argue that hadrons at transverse momenta P_T < 5 GeV are formed by recombination of partons from the dense parton phase created in central collisions at RHIC. We provide a theoretical description of the recombination process for P_T > 2 GeV. Below P_T = 2 GeV our results smoothly match a purely statistical description. At high transverse momentum hadron production is well described in the language of perturbative QCD by the fragmentation of partons. We give numerical results for a variety of hadron spectra, ratios and nuclear suppression factors. We also discuss the anisotropic flow v_2 and give results based on a flow in the parton phase. Our results are consistent with the existence of a parton phase at RHIC hadronizing at a temperature of 175 MeV and a radial flow velocity of 0.55c.Comment: 25 pages LaTeX, 18 figures; v2: some references updated; v3: some typos fixe

    Hadronization in heavy ion collisions: recombination or fragmentation?

    Full text link
    We show that hadron production in relativistic heavy ion collisions at transverse momenta larger than 2 GeV/c can be explained by the competition of two different hadronization mechanisms. Above 5 GeV/c hadron production can be described by fragmentation of partons that are created perturbatively. Below 5 GeV/c recombination of partons from the dense and hot fireball dominates. This can explain some of the surprising features of RHIC data like the constant baryon-to-meson ratio of about one and the small nuclear suppression for baryons between 2 to 4 GeV/c.Comment: Contribution to the 7th Conference on Strange Quark Matter (SQM 2003), submitted to J.Phys.G; 6 pages LaTeX, 4 eps figures, uses iopart.cl

    Neutron diffraction and magnetic properties of Co2_2Cr1−x_{1-x}Tix_xAl Heusler alloys

    Full text link
    We report the structural, magnetic, and magnetocaloric properties of Co2_2Cr1−x_{1-x}Tix_xAl (x=x= 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns along with Rietveld refinements confirm that the samples are of single phase and possess a cubic structure. Interestingly, magnetic susceptibly measurements indicate a second order phase transition from paramagnetic to ferromagnetic where the Curie temperature (TC_{\rm C}) of Co2_2CrAl increases from 330~K to 445~K with Ti substitution. Neutron powder diffraction data of the x=x= 0 sample across the magnetic phase transition taken in a large temperature range confirm the structural stability and exclude the possibility of antiferromagnetic ordering. The saturation magnetization of the x=x= 0 sample is found to be 8000~emu/mol (1.45~μB\mu_{\rm B}/{\it f.u.}) at 5~K, which is in good agreement with the value (1.35±\pm0.05~μB\mu_{\rm B}/{\it f.u.}) obtained from the Rietveld analysis of the neutron powder diffraction pattern measured at temperature of 4~K. By analysing the temperature dependence of the neutron data of the x=x= 0 sample, we find that the change in the intensity of the most intense Bragg peak (220) is consistent with the magnetization behavior with temperature. Furthermore, an enhancement of change in the magnetic entropy and relative cooling power values has been observed for the x=x= 0.25 sample. Interestingly, the critical behavior analysis across the second order magnetic phase transition and extracted exponents (β≈\beta\approx 0.496, γ≈\gamma\approx 1.348, and δ≈\delta\approx 3.71 for the x=x= 0.25 sample) suggest the presence of long-range ordering, which deviates towards 3D Heisenberg type interactions above TC_{\rm C}, consistent with the interaction range value σ\sigma.Comment: submitte
    • …
    corecore