30 research outputs found

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Marine Heatwaves in the South China Sea: Tempo-Spatial Pattern and Its Association with Large-Scale Circulation

    No full text
    A marine heatwave (MHW) can significantly harm marine ecosystems and fisheries. Based on a remotely sensed sea surface temperature (SST) product, this study investigated MHWs behaviors in the South China Sea (SCS) throughout the warm season (May to September) from 1982 to 2020. The distributions of the three MHW indices used in this study showed significant latitudinal variations: more frequent, longer, and more intense MHWs appear in the northern SCS, and less frequent, shorter, and weaker MHWs appear in the southern SCS. Using the empirical orthogonal function (EOF) method, we found that the first leading modes of the three MHW indices account for more than half of the total variance. The first leading modes reveal uniform anomalies throughout the SCS, with the maximum in the deep central portion and its surroundings. Their corresponding time series showed significant interdecadal variations, with a turning point around 2009. Since 2010, the SCS has seen an increase in the frequency, length, and severity of MHWs. The incidence of MHWs has been linked to the presence of stable near-surface anticyclonic anomalies, which reduced cloud cover and increased solar radiation. This abnormal pattern was usually accompanied by the intensification and westward shift of the western North Pacific subtropical high (WNPSH). The findings imply that MHWs in the SCS may be predictable on interannual and decadal scales

    The Outburst of a Lake and Its Impacts on Redistribution of Surface Water Bodies in High-Altitude Permafrost Region

    No full text
    The lakes distributed in permafrost areas on the Tibetan Plateau (TP) have been experiencing significant changes during the past few decades as a result of the climate warming and regional wetting. In September 2011, an outburst occurred on an endorheic lake (Zonag Lake) in the interior of the TP, which caused the spatial expansion of three downstream lakes (Kusai Lake, Haidingnor Lake and Salt Lake) and modified the four independent lake catchments to one basin. In this study, we investigate the changes in surficial areas and water volumes of the outburst lake and related downstream water bodies 10 years after the outburst. Based on the meteorological and satellite data, the reasons for the expansion of downstream lakes were analyzed. Additionally, the importance of the permafrost layer in determining hydrological process on the TP and the influence of from lake expansion on engineering infrastructures were discussed. The results in this study showed the downstream lakes increased both in area and volume after the outburst of the headwater. Meanwhile, we hope to provide a reference about surface water changes and permafrost degradation for the management of lake overflow and flood on the TP in the background of climate warming and wetting

    Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains

    No full text
    The glaciers in northwest China are mainly distributed in the northern part of the Himalayas, the Kunlun Mountains, and the Tianshan Mountains. Glaciers are an important freshwater resource in the northern part of the Kunlun Mountains, and the melting of glaciers and snow provides an assured source of water for rivers on the southern edge of the Tarim Basin. Based on the first glacier inventory dataset on China (1968), the second glacier inventory dataset on China (2009), and the glacier inventory dataset on Western China in 2018, this study used DEM data, Landsat remote sensing images, and ERA5 atmospheric reanalysis data to investigate glacier change and its influencing factors with respect to the northern part of the Kunlun Mountains. The results showed that there were 9273 glaciers in the northern part of the Kunlun Mountains in 2018, with an area of about 11,762.72 km2, an ice inventory of about 1168.53 km3, and an average length per glacier of about 1.68 km. The glaciers were mainly distributed at altitudes of 5300–6100 m (7574.66 km2). From 1968 to 2018, the number of glaciers in the northern stretch of the Kunlun Mountains increased by 343, while the glacier area decreased by 2452.80 km2 (−0.14%/a). From 2009 to 2018, the glacier area at the altitude of 4900 m to 6100 m decreased in the northern section of the Kunlun Mountains, and the glacier area at the remaining altitude increased slightly (10.67 km2). From 1968 to 2018, the glacier area and glacier length in all river basins decreased. The relative rate of glacier area change in the Qarqan River basin from 2009 to 2018 was five times that of 1968–2009, and this needs significant attention. From 1968 to 2018, both temperature and precipitation increased to varying degrees, and the increase in precipitation was beneficial to the accumulation of glaciers. Therefore, the increase in temperature was the main cause of glacier change in the northern section of the Kunlun Mountains

    Identification and Molecular Characteristics of a Novel Single-Stranded RNA Virus Isolated from Culex tritaeniorhynchus in China

    No full text
    ABSTRACT Hubei mosquito virus 2 (HMV2) is a novel mosquito virus that was first identified in 2016 in Hubei Province, China. Until now, HMV2 has been shown to be endemic in some areas of China and Japan, but its biological characteristics, epidemiology, and pathogenicity are not yet known. This report describes the detection of HMV2 in mosquitoes that were collected in Shandong Province in 2019 and presents the first isolation and molecular characterization of the virus. In this study, a total of 2,813 mosquitoes were collected and then divided into 57 pools, according to location and species. qRT-PCR and nested PCR were performed to confirm the presence of HMV2, and its genomic features, phylogenetic relationships, growth characteristics, and potential pathogenicity were further analyzed. The results showed that HMV2 was detected in 28 of the 57 mosquito pools and that the minimum infection rate (MIR) for HMV2 was 1.00% (28/2,813). A HMV2 strain and 14 viral partial sequences were obtained from the HMV2-positive pools, including one complete genome sequence. A phylogenetic analysis revealed that HMV2 from Shandong Province shared over 90% identity with other reported isolates and was closely related to the Culex inatomii luteo-like virus. IMPORTANCE Our study provided important epidemiological evidence for the epidemic of HMV2 in Shandong Province. Here, we report the first isolation and molecular characteristics of this virus and enrich our knowledge of the distribution of HMV2 in China

    The Outburst of a Lake and Its Impacts on Redistribution of Surface Water Bodies in High-Altitude Permafrost Region

    No full text
    The lakes distributed in permafrost areas on the Tibetan Plateau (TP) have been experiencing significant changes during the past few decades as a result of the climate warming and regional wetting. In September 2011, an outburst occurred on an endorheic lake (Zonag Lake) in the interior of the TP, which caused the spatial expansion of three downstream lakes (Kusai Lake, Haidingnor Lake and Salt Lake) and modified the four independent lake catchments to one basin. In this study, we investigate the changes in surficial areas and water volumes of the outburst lake and related downstream water bodies 10 years after the outburst. Based on the meteorological and satellite data, the reasons for the expansion of downstream lakes were analyzed. Additionally, the importance of the permafrost layer in determining hydrological process on the TP and the influence of from lake expansion on engineering infrastructures were discussed. The results in this study showed the downstream lakes increased both in area and volume after the outburst of the headwater. Meanwhile, we hope to provide a reference about surface water changes and permafrost degradation for the management of lake overflow and flood on the TP in the background of climate warming and wetting

    Dynamic Behavior of Geosynthetic-Reinforced Expansive Soil under Freeze-Thaw Cycles

    No full text
    Expansive soil has a significant impact on the stability of many key construction projects in cold regions. To study the physical and mechanical properties of expanded soil under the condition of freeze-thaw cycle, cryogenic cyclic triaxial tests were conducted on the dynamic and the displacement characteristics of geosynthetic-reinforced expansive soil subjected to the freeze-thaw cycles. Compared with the unreinforced expansive soil samples, the effects of freeze-thaw cycles on the soil dynamics were discussed. The dynamic shear modulus (Gd) and damping ratio (λ) of the expansive soil samples are improved by reinforcement. Reinforced soil can inhibit the axial compression of the sample and restrain the frost heave deformation of the sample during the freezing process. Meanwhile, it can delay the structural damage effect caused by frost heave and reduce the rate of change of the Gd and the λ with the freeze-thaw cycle. At the same time, reinforced soil can inhibit the axial expansion, reduce the rate of reduction of the Gd, stabilize it with a higher rate, and reduce the influence of the freeze-thaw cycles on the λ of the expansive soil sample. Finally, the change of mechanical properties of expansive soil under the condition of reinforcement is obtained. The main conclusions of this paper can be used to reinforce the roadbed and foundation engineering of frozen soil in a cold region and provide support for the fiber reinforcement method of expansive soil

    Expression of Pinellia pedatisecta Lectin Gene in Transgenic Wheat Enhances Resistance to Wheat Aphids

    No full text
    Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104) by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat
    corecore