597 research outputs found
Global convergence of splitting methods for nonconvex composite optimization
We consider the problem of minimizing the sum of a smooth function with a
bounded Hessian, and a nonsmooth function. We assume that the latter function
is a composition of a proper closed function and a surjective linear map
, with the proximal mappings of , , simple to
compute. This problem is nonconvex in general and encompasses many important
applications in engineering and machine learning. In this paper, we examined
two types of splitting methods for solving this nonconvex optimization problem:
alternating direction method of multipliers and proximal gradient algorithm.
For the direct adaptation of the alternating direction method of multipliers,
we show that, if the penalty parameter is chosen sufficiently large and the
sequence generated has a cluster point, then it gives a stationary point of the
nonconvex problem. We also establish convergence of the whole sequence under an
additional assumption that the functions and are semi-algebraic.
Furthermore, we give simple sufficient conditions to guarantee boundedness of
the sequence generated. These conditions can be satisfied for a wide range of
applications including the least squares problem with the
regularization. Finally, when is the identity so that the proximal
gradient algorithm can be efficiently applied, we show that any cluster point
is stationary under a slightly more flexible constant step-size rule than what
is known in the literature for a nonconvex .Comment: To appear in SIOP
Calculus of the exponent of Kurdyka-{\L}ojasiewicz inequality and its applications to linear convergence of first-order methods
In this paper, we study the Kurdyka-{\L}ojasiewicz (KL) exponent, an
important quantity for analyzing the convergence rate of first-order methods.
Specifically, we develop various calculus rules to deduce the KL exponent of
new (possibly nonconvex and nonsmooth) functions formed from functions with
known KL exponents. In addition, we show that the well-studied Luo-Tseng error
bound together with a mild assumption on the separation of stationary values
implies that the KL exponent is . The Luo-Tseng error bound is known
to hold for a large class of concrete structured optimization problems, and
thus we deduce the KL exponent of a large class of functions whose exponents
were previously unknown. Building upon this and the calculus rules, we are then
able to show that for many convex or nonconvex optimization models for
applications such as sparse recovery, their objective function's KL exponent is
. This includes the least squares problem with smoothly clipped
absolute deviation (SCAD) regularization or minimax concave penalty (MCP)
regularization and the logistic regression problem with
regularization. Since many existing local convergence rate analysis for
first-order methods in the nonconvex scenario relies on the KL exponent, our
results enable us to obtain explicit convergence rate for various first-order
methods when they are applied to a large variety of practical optimization
models. Finally, we further illustrate how our results can be applied to
establishing local linear convergence of the proximal gradient algorithm and
the inertial proximal algorithm with constant step-sizes for some specific
models that arise in sparse recovery.Comment: The paper is accepted for publication in Foundations of Computational
Mathematics: https://link.springer.com/article/10.1007/s10208-017-9366-8. In
this update, we fill in more details to the proof of Theorem 4.1 concerning
the nonemptiness of the projection onto the set of stationary point
SOS-Hankel Tensors: Theory and Application
Hankel tensors arise from signal processing and some other applications. SOS
(sum-of-squares) tensors are positive semi-definite symmetric tensors, but not
vice versa. The problem for determining an even order symmetric tensor is an
SOS tensor or not is equivalent to solving a semi-infinite linear programming
problem, which can be done in polynomial time. On the other hand, the problem
for determining an even order symmetric tensor is positive semi-definite or not
is NP-hard. In this paper, we study SOS-Hankel tensors. Currently, there are
two known positive semi-definite Hankel tensor classes: even order complete
Hankel tensors and even order strong Hankel tensors. We show complete Hankel
tensors are strong Hankel tensors, and even order strong Hankel tensors are
SOS-Hankel tensors. We give several examples of positive semi-definite Hankel
tensors, which are not strong Hankel tensors. However, all of them are still
SOS-Hankel tensors. Does there exist a positive semi-definite non-SOS-Hankel
tensor? The answer to this question remains open. If the answer to this
question is no, then the problem for determining an even order Hankel tensor is
positive semi-definite or not is solvable in polynomial-time. An application of
SOS-Hankel tensors to the positive semi-definite tensor completion problem is
discussed. We present an ADMM algorithm for solving this problem. Some
preliminary numerical results on this algorithm are reported
A Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure
Yuan's theorem of the alternative is an important theoretical tool in
optimization, which provides a checkable certificate for the infeasibility of a
strict inequality system involving two homogeneous quadratic functions. In this
paper, we provide a tractable extension of Yuan's theorem of the alternative to
the symmetric tensor setting. As an application, we establish that the optimal
value of a class of nonconvex polynomial optimization problems with suitable
sign structure (or more explicitly, with essentially non-positive coefficients)
can be computed by a related convex conic programming problem, and the optimal
solution of these nonconvex polynomial optimization problems can be recovered
from the corresponding solution of the convex conic programming problem.
Moreover, we obtain that this class of nonconvex polynomial optimization
problems enjoy exact sum-of-squares relaxation, and so, can be solved via a
single semidefinite programming problem.Comment: acceted by Journal of Optimization Theory and its application, UNSW
preprint, 22 page
Peaceman-Rachford splitting for a class of nonconvex optimization problems
We study the applicability of the Peaceman-Rachford (PR) splitting method for
solving nonconvex optimization problems. When applied to minimizing the sum of
a strongly convex Lipschitz differentiable function and a proper closed
function, we show that if the strongly convex function has a large enough
strong convexity modulus and the step-size parameter is chosen below a
threshold that is computable, then any cluster point of the sequence generated,
if exists, will give a stationary point of the optimization problem. We also
give sufficient conditions guaranteeing boundedness of the sequence generated.
We then discuss one way to split the objective so that the proposed method can
be suitably applied to solving optimization problems with a coercive objective
that is the sum of a (not necessarily strongly) convex Lipschitz differentiable
function and a proper closed function; this setting covers a large class of
nonconvex feasibility problems and constrained least squares problems. Finally,
we illustrate the proposed algorithm numerically
- …