100 research outputs found

    Reduced mRNA and Protein Expression Levels of Tet Methylcytosine Dioxygenase 3 in Endothelial Progenitor Cells of Patients of Type 2 Diabetes With Peripheral Artery Disease

    Get PDF
    Endothelial progenitor cells (EPCs) with immunological properties repair microvasculature to prevent the complications in patients with diabetes. Epigenetic changes such as DNA methylation alter the functions of cells. Tet methylcytosine dioxygenases (TETs) are enzymes responsible for the demethylation of cytosine on genomic DNA in cells. We hypothesized that EPCs of diabetic patients with peripheral artery disease (D-PAD) might have altered expression levels of TETs. Subjects who were non-diabetic (ND, n = 22), with diabetes only (D, n = 29) and with D-PAD (n = 22) were recruited for the collection of EPCs, which were isolated and subjected to analysis. The mRNA and protein expression levels of TET1, TET2, and TET3 were determined using real-time PCR and immunoblot, respectively. The TET1 mRNA expression level in ND group was lower than that in the D and D-PAD groups. The TET3 mRNA level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group. The TET1 protein level in the D-PAD group, but not the D group, was higher than that in the ND group. The TET2 protein level in the D-PAD group, but not the D group, was lower than that in the ND group. The TET3 protein level in the ND group was higher than that in the D group, which was higher than that in the D-PAD group, which is the lowest among the three groups. The changes of TETs protein levels were due to the alterations of their transcripts. These probably lead to epigenetic changes, which may be responsible for the reductions of EPCs numbers and functions in patients with the D-PAD. The expression pattern of TET3 mRNA and TET3 protein in EPCs may be a biomarker of angiopathy in diabetic patients

    Robot-assisted percutaneous screw fixation in the treatment of navicular fracture

    Get PDF
    BackgroundLong recovery time, large scar, postoperative swelling and pain are possible side effects of open reduction internal fixation (ORIF) for tarsal navicular fractures. Early exercise instruction is made possible by the use of an intraoperative robot-assisted percutaneous invasive closed reduction internal fixation. The goal of the trial was to determine whether percutaneous screw internal fixation with robot assistance might be used to treat navicular fractures.Methods27 patients with navicular fractures had surgical treatment between June 2019 and December 2021. Of those, 20 instances were treated with ORIF, while 7 cases had robot-assisted percutaneous screw internal fixation. At the final follow-up, the American Orthopaedic Foot & Ankle Society (AOFAS) hindfoot score and the visual analogue scale (VAS) score were compared to determine outcomes and function.ResultsFollow-up was obtained in all 27 patients after surgery, with a mean follow-up time of 21.81 months, ranging from 15 to 29 months . In the 7 instances of robot-assisted group, percutaneous guide wire insertion and screw placement only needed one attempt and the depth and position of the implant were both satisfactory. In the ORIF group, there were two patients who sustained cutaneous nerve injuries. The AOFAS score and the VAS score of the group receiving robot-assisted navigation percutaneous screw fixation were 92.25 ± 2.22 and 0.75 ± 0.25 respectively at the last follow-up, while 82.25 ± 7.15 and 0.50 ± 0.29 were the respective values for the ORIF group.ConclusionIntraoperative robot-assisted percutaneous closed reduction internal fixation for tarsal navicular fractures can accomplish exact localization of fracture site, reduce soft tissue damage and operative time. According to current view, this method offers fewer complications, a faster recovery after surgery, and more patient satisfaction

    Identification and characterization of novel amphioxus microRNAs by Solexa sequencing

    Get PDF
    An analysis of amphioxus miRNAs suggests an expansion of miRNAs played a key role in the evolution of chordates to vertebrate

    Insulin-Regulated Srebp-1c and Pck1 mRNA Expression in Primary Hepatocytes from Zucker Fatty but Not Lean Rats Is Affected by Feeding Conditions

    Get PDF
    Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation

    Band Gaps Characteristics Analysis of Periodic Oscillator Coupled Damping Beam

    No full text
    The vibration of the periodic oscillator coupled damping beam model is reduced through the band gaps designing method, which can be applied in equivalent engineering structures. In this paper, the flexural wave dispersion relations of the infinite long periodic oscillator coupled damping beam were calculated using the reverberation-ray matrix method combined with the Bloch theorem. The flexural wave vibration frequency response function of the finite long periodic oscillator coupled damping beam was carried out using the finite element method. The flexural wave vibration band gaps occur in the infinite long periodic oscillator coupled damping beam model in both the analytical and numerical results. In these band gaps, flexural waves’ propagation is prohibited, and flexural vibration is significantly suppressed. Furthermore, the effects of structure and material parameters on the flexural wave vibration band gaps characteristics are studied. Thus, the structural vibration reduction design can be realized by adjusting the related parameters of the periodic coupled damping beam structures and the equivalent 2D periodic stiffened plate structures

    Vibration Band Gap Characteristics of Two-Dimensional Periodic Double-Wall Grillages

    No full text
    In this article, the wave finite element method (WFEM) is used to calculate the band gap characteristics of two-dimensional (2D) periodic double-wall grillages (DwGs), which are verified by the grillage model vibration measurement experiment and finite element calculation. To obtain the band gap characteristics of periodic DwGs, the finite element calculation model is established according to the lattice and energy band theory and the characteristic equation of the periodic unit cell under the given wave vector condition is solved based on Bloch theorem. Then, the frequency transfer functions of finite-length manufactured and finite element models are obtained to verify the band gap characteristics of periodic DwGs. Finally, the effects of material parameters and structural forms on band gap characteristics and transfer functions are analyzed, which can provide a reference for engineering structure vibration and noise reduction design

    Retinoids synergized with insulin to induce Srebp-1c expression and activated its promoter via the two liver X receptor binding sites that mediate insulin action

    No full text
    We have reported that the rat liver lipophilic extract (LE) synergized with insulin to induce Gck and Srebp-1c in primary rat hepatocytes. After identification of retinol and retinal in LE, only their effects in the absence or presence of insulin on Gck, but not that on Srebp-1c, were investigated subsequently. The retinoid effects on the Srebp-1c expression and the activation of its promoter were examined with real-time PCR and reporter gene assays, respectively. In primary hepatocytes, retinal and retinoic acid (RA) synergized with insulin to induce Srebp-1c expression. This induction was followed by the elevation of its target gene, fatty acid synthase. Activation of retinoid X receptor, but not retinoic acid receptor, was responsible for the induction of Srebp-1c expression. RA, but not retinal, also induced Srebp-1c expression in a dose dependent manner in INS-1 cells. The RA responsive elements in Srebp-1c promoter were determined as previously identified two liver X receptor elements responsible for mediating insulin action. We conclude that retinoids regulate hepatic Srebp-1c expression through activation of retinoid X receptor. The RA- and insulin-induced Srebp-1c expression converged at the same sites in its promoter, indicating the roles of vitamin A in regulation of hepatic gene expression
    • …
    corecore