38 research outputs found

    Effect of Recession on the Re-entry Capsule Aerodynamic Characteristic

    Get PDF
    AbstractNumerical simulation and analysis of aerodynamic characteristics of Soyuz ablation shape is carried out in this paper for the adverse influence coming from recession. The result indicates that the shape change caused by the recession will increase absolute value of trim angle of attack and trim lift-drag ratio. The conclusion offers reference for the aerodynamic layout design and improve of the Soyuz re-entry capsule

    Response of the mosquito protein interaction network to dengue infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two fifths of the world's population is at risk from dengue. The absence of effective drugs and vaccines leaves vector control as the primary intervention tool. Understanding dengue virus (DENV) host interactions is essential for the development of novel control strategies. The availability of genome sequences for both human and mosquito host greatly facilitates genome-wide studies of DENV-host interactions.</p> <p>Results</p> <p>We developed the first draft of the mosquito protein interaction network using a computational approach. The weighted network includes 4,214 <it>Aedes aegypti </it>proteins with 10,209 interactions, among which 3,500 proteins are connected into an interconnected scale-free network. We demonstrated the application of this network for the further annotation of mosquito proteins and dissection of pathway crosstalk. Using three datasets based on physical interaction assays, genome-wide RNA interference (RNAi) screens and microarray assays, we identified 714 putative DENV-associated mosquito proteins. An integrated analysis of these proteins in the network highlighted four regions consisting of highly interconnected proteins with closely related functions in each of replication/transcription/translation (RTT), immunity, transport and metabolism. Putative DENV-associated proteins were further selected for validation by RNAi-mediated gene silencing, and dengue viral titer in mosquito midguts was significantly reduced for five out of ten (50.0%) randomly selected genes.</p> <p>Conclusions</p> <p>Our results indicate the presence of common host requirements for DENV in mosquitoes and humans. We discuss the significance of our findings for pharmacological intervention and genetic modification of mosquitoes for blocking dengue transmission.</p

    Reciprocal polarization imaging of complex media

    Full text link
    The vectorial evolution of polarized light interaction with a medium can reveal its microstructure and anisotropy beyond what can be obtained from scalar light interaction. Anisotropic properties (diattenuation, retardance, and depolarization) of a complex medium can be quantified by polarization imaging by measuring the Mueller matrix. However, polarization imaging in the reflection geometry, ubiquitous and often preferred in diverse applications, has suffered a poor recovery of the medium's anisotropic properties due to the lack of suitable decomposition of the Mueller matrices measured inside a backward geometry. Here, we present reciprocal polarization imaging of complex media after introducing reciprocal polar decomposition for backscattering Mueller matrices. Based on the reciprocity of the optical wave in its forward and backward scattering paths, the anisotropic diattenuation, retardance, and depolarization of a complex medium are determined by measuring the backscattering Mueller matrix. We demonstrate reciprocal polarization imaging in various applications for quantifying complex non-chiral and chiral media (birefringence resolution target, tissue sections, and glucose suspension), uncovering their anisotropic microstructures with remarkable clarity and accuracy. We also highlight types of complex media that Lu-Chipman and differential decompositions of backscattering Mueller matrices lead to erroneous medium polarization properties, whereas reciprocal polar decomposition recovers properly. Reciprocal polarization imaging will be instrumental in imaging complex media from remote sensing to biomedicine and will open new applications of polarization optics in reflection geometry

    Qusongite (WC): A new mineral

    Get PDF
    aBstRact An unusual group of mantle minerals including about 70-80 species has been recovered from podiform chromitites of the Luobusa ophiolite, Qusong County, Tibet, China. All of the minerals were hand picked from heavy mineral separates of the chromitite. The minerals include diamond, coesite, moissanite, wüstite, intermetallic compounds, Os-Ir alloys with diamond inclusions, Fe-silicides, and a new mineral, qusongite. Qusongite is associated with chromian chlorite, calcite, (W,Ti)C and (Ti,W) C alloys, and chromite. It occurs as angular grains generally 4-8 µm in diameter, but some are as large as 0.2 × 0.3 × 0.25 mm. The grains are opaque and steel-gray with a metallic luster and grayish-yellow reflection. The empirical formula (based on 2 atoms) is W 1.006 Cr 0.02 C 0.992 , and the simplified formula is WC. Qusongite has a hexagonal structure and belongs to space group P6m2, with a = 2.90

    Geometry and kinematics for a spherical-base integrated parallel mechanism

    Get PDF
    Parallel mechanisms, in general, have a rigid base and a moving platform connected by several limbs. For achieving higher mobility and dexterity, more degrees of freedom are introduced to the limbs. However, very few researchers focus on changing the design of the rigid base and making it foldable and reconfigurable to improve the performance of the mechanism. Inspired by manipulating an object with a metamorphic robotic hand, this paper presents for the first time a parallel mechanism with a reconfigurable base. This novel spherical-base integrated parallel mechanism has an enlarged workspace compared with traditional parallel manipulators. Evolution and structure of the proposed parallel mechanism is introduced and the geometric constraint of the mechanism is investigated based on mechanism decomposition. Further, kinematics of the proposed mechanism is reduced to the solution of a univariate polynomial of degree 8. Moreover, screw theory based Jacobian is presented followed by the velocity analysis of the mechanism

    The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti

    Get PDF
    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement

    Terminal Satisfiability in GSTE

    No full text
    Generalized symbolic trajectory evaluation (GSTE) is an extension of symbolic trajectory evaluation (STE) and a method of model checking. GSTE specifications are given as assertion graphs. There are four efficient methods to verify whether a circuit model obeys an assertion graph in GSTE, Model Checking Strong Satisfiability (SMC), Model Checking Normal Satisfiability (NMC), Model Checking Fair Satisfiability (FMC), and Model Checking Terminal Satisfiability (TMC). SMC, NMC, and FMC have been proved and applied in industry, but TMC has not. This paper gives a six-tuple definition and presents a new algorithm for TMC. Based on these, we prove that our algorithm is sound and complete. It solves the SMC’s limitation (resulting in false negative) without extending from finite specification to infinite specification. At last, a case of using TMC to verify a realistic hardware circuit round-robin arbiter is achieved. Avoiding verifying the undesired paths which are not related to the specifications, TMC makes it possible to reduce the computational complexity, and the experimental results suggest that the time cost by SMC is 3.14× with TMC in the case
    corecore