9 research outputs found

    Cell surface vitamin D-binding protein (GC-globulin) is acquired from plasma.

    No full text
    Vitamin D-binding protein (DBP) is an abundant plasma protein. The observation of immunodetectable, cell-associated DBP on peripheral blood mononuclear cells and placental cytotrophoblasts had presented the question of the origin, function, and precise subcellular localization of cell-associated DBP. Using anti-human DBP F(ab')2 with fluorescence-activated cytometric analysis and immunogold electron microscopy, we detected DBP on the plasmalemma of U937 cells, a monoblastic, histiocytic cell line grown in media supplemented with fetal calf serum (FCS). DBP was then removed from FCS by actin affinity chromatography followed by anti-DBP immunoaffinity chromatography. U937 cells in this DBP-free medium exhibited nearly identical growth rates to cells grown in medium containing native FCS. However, in contrast to cells grown with native FCS, those grown for seven to eight generations with DBP-free FCS exhibited less cell-surface DBP as quantified by fluorescence-activated cytometric analysis (73% decrease) and immunoelectron microscopy (88% decrease). DBP mRNA could not be detected in U937 cells, placental tissues, freshly prepared resting and stimulated B and T lymphocytes, or lymphocyte-derived cell lines by Northern analysis. In addition, using the sensitive reverse transcriptase/polymerase chain reaction assay no DBP fragments were detectable in U937 cells. We conclude that U937 cell-associated DBP is exogenously derived from plasma and is located on the plasmalemma. Based upon this conclusion, we postulate that specific binding sites for DBP may exist on the plasma membranes of certain cell types

    Isolation and characterization of two peptides with prolactin release-inhibiting activity from porcine hypothalami.

    No full text
    Two peptides with in vitro prolactin release-inhibiting activity were purified from stalk median eminence (SME) fragments of 20,000 pig hypothalami. Monolayer cultures of rat anterior pituitary cells were incubated with aliquots of chromatographic fractions and the inhibition of release of prolactin in vitro was measured by RIA in order to monitor the purification. The hypothalamic tissue extract was separated into 11 fractions by high-performance aqueous size-exclusion chromatography with one fraction showing a 4-fold increase in prolactin release-inhibiting factor (PIF) activity. This material was further purified by semipreparative reversed-phase (RP) HPLC. This process resulted in the separation of two distinct fractions that showed high PIF activity. These were further purified by semipreparative and analytical RP-HPLC to apparent homogeneity as judged by the UV absorbance profiles. Neither of the two peptides showed cross-reactivity with gonadotropin releasing hormone-associated peptide or with somatostatin-14 antibodies. Protein sequence analysis revealed that one of the PIF peptides was Trp-Cys-Leu-Glu-Ser-Ser-Gln-Cys-Gln-Asp-Leu-Ser-Thr-Glu-Ser-Asn-Leu-Leu- Ala-Cys - Ile-Arg-Ala-Cys-Lys-Pro, identical to residues 27-52 of the N-terminal region of the proopiomelanocortin (POMC) precursor (corresponding to amino acids 1-26 of the 16-kDa fragment). The sequence of the other PIF was Ala-Ser-Asp-Arg-Ser-Asn-Ala-Thr-Leu-Leu-Asp-Gly-Pro-Ser-Gly-Ala-Leu-Leu- Leu-Arg - Leu-Val-Gln-Leu-Ala-Gly-Ala-Pro-Glu-Pro-Ala-Glu-Pro-Ala-Gln-Pro-Gly-Val- Tyr, representing residues 109-147 of the vasopressin-neurophysin precursor. Synthetic peptides corresponding to the N-terminal region of POMC had significant PIF activity in vitro
    corecore