40 research outputs found
A novel approach for prognosis of lithium-ion battery based on geometrical features and data-driven model
Lithium-ion (Li-ion) batteries are widely used in such devices as today’s electrical vehicles, consumer electronics, and unmanned aerial vehicles, and will play a key role in the future. Unexpected Li-ion battery abnormities may result in serious inconvenience and enormous replacement costs. Thus, the diagnostic and prognostic methods play important roles in battery replacement scheduling, maintenance strategy development, and battery failure precaution, However, many published methods are unsuitable for both battery capacity and end-of-discharge. In this paper, a hybrid ensemble approach, integrating k-fold cross validation (k-CV) and genetic algorithm with back-propagation neural network (GA-BPNN), is proposed for capacity and end-of-discharge of Li-ion battery prognostics combined with geometrical features. Geometrical features extracted from charge-discharge cycles of Li-ion batteries are set as the inputs of the neural network. K-fold cross validation is introduced to determine the number of BPNN hidden layer neurons, genetic algorithm is used to initialize and optimize the connection weights and thresholds of BPNN. By the critical geometrical feature extraction and the ensemble BPNN model with k-fold cross validation and genetic algorithm, accurate battery capacity and end-of discharge are accomplished, making the proposed model can potentially be used for real-time estimate for the conditions given in this article. The performance of the proposed approach is demonstrated by using actual Li-ion battery data, which is supplied by the NASA Ames Research Center database
Inhibition of PC cell-derived growth factor (PCDGF)/granulin-epithelin precursor (GEP) decreased cell proliferation and invasion through downregulation of cyclin D and CDK 4 and inactivation of MMP-2
BACKGROUND: PC cell-derived growth factor (PCDGF), also called epithelin/granulin precursor (GEP), is an 88-kDa secreted glycoprotein with the ability to stimulate cell proliferation in an autocrine fashion. In addition, some studies indicated that PCDGF participated in invasion, metastasis and survival of cancer cells by regulating cell migration, adhesion and proliferation. Yet the effects of PCDGF on proliferation and invasion of ovarian cancer cells in vitro and the mechanisms by which PCDGF mediates biological behaviors of ovarian cancer have rarely been reported. In the present study we investigated whether and how PCDGF/GEP mediated cell proliferation and invasion in ovarian cancer. METHODS: PCDGF/GEP expression level in three human ovarian cancer cell lines of different invasion potential were detected by RT-PCR and western blot. Effects of inhibition of PCDGF expression on cell proliferation and invasion capability were determined by MTT assay and Boyden chamber assay. Expression levels of cyclin D1 and CDK4 and MMP-2 activity were evaluated in a pilot study. RESULTS: PCDGF mRNA and protein were expressed at a high level in SW626 and A2780 and at a low level in SKOV3. PCDGF expression level correlated well with malignant phenotype including proliferation and invasion in ovarian cancer cell lines. In addition, the proliferation rate and invasion index decreased after inhibition of PCDGF expression by antisense PCDGF cDNA transfection in SW626 and A2780. Furthermore expression of CyclinD1 and CDK4 were downregulated and MMP-2 was inactivated after PCDGF inhibition in the pilot study. CONCLUSION: PCDGF played an important role in stimulating proliferation and promoting invasion in ovarian cancer. Inhibition of PCDGF decreased proliferation and invasion capability through downregulation of cyclin D1 and CDK4 and inactivation of MMP-2. PCDGF could serve as a potential therapeutic target in ovarian cancer
Two Scenario-Based Heuristics for Stochastic Shift Design Problem with Task-Based Demand
In this paper, we propose a deterministic shift design model with task-based demand and give the corresponding stochastic version with a probability constraint such that the shift plan designed is staffed with the workforce with a certain probability of performing all given tasks. Since we currently find no suitable methods for solving this stochastic model from the literature related to solving stochastic shift design models, we developed a single-stage heuristic method based on statistics, whose main idea is to reduce the occurrence of manpower shortage by prolonging the resource occupation time of a task, but this leads to a serious waste of resources, which is common in solving resource allocation problems with uncertain durations. To reduce the cost of wastage, we also propose a two-stage heuristic approach that is a two-stage heuristic with an evolutionary strategy. The two heuristics show their effectiveness in solving the proposed stochastic model in numerical experiments, and the two-stage heuristic significantly outperforms the one-stage heuristic in cost optimization and solution time stability
Design optimization of ethylene glycol interwall heat exchange wellhead antifreeze system in Yindonggou Coal Mine
A method of extracting exhaust waste heat and heating inlet wellhead by glycol wall heat exchange technology is proposed. Calculation and system design of exhaust air waste heat based on heat balance theory, combined with the actual case of Ningxia Yindonggou Coal Mine project, the Threlkeld enthalpy difference method was used to develop an analytical model for single tube heat transfer under wet conditions and to optimize the operating conditions. The results show that the glycol inter-wall heat transfer technology can extract the heat from the mine return air and meet the heat load required to prevent freezing at the wellhead. The system operates stably when the inlet temperature of the heat transfer medium in the tube is -2 ℃ and the flow rate is 1.49 m/s to 2.76 m/s. When the outdoor temperature is below -15 ℃, the wellhead temperature can still reach above 5 ℃
Investigation on the Gas–Solid Two-Phase Flow in the Interaction between Plane Shock Wave and Quartz Sand Particles
The interaction between a shock wave and solid particles involves complex gas–solid two-phase flow, which is widely used in industrial processes. Theoretical analysis, an experimental test, and simulation were combined to investigate the interaction process between a shock wave and quartz sand particles. The variation of physical parameters of the two phases during the interaction process was considered theoretically. Then, a novel vertical shock tube generator was employed to record the pressure attenuation and dispersion process of solid particles. Finally, the complex gas–solid two-phase flow was simulated based on the computational fluid dynamics method. The results showed that a nonequilibrium state was formed during the interaction process and momentum exchange generated, resulting in a drag force of the shock wave on the particles. The shock intensity obviously attenuated after the shock wave passed through the solid particles, and this part of the energy was work on the solid particles to drive their dispersion. A three-dimensional annular vortex was generated around the solid particles due to the entrainment effect of airflow. Under the shock wave action of 1.47 Ma, the three types of solid particles with average diameters of 2.5, 0.95, and 0.42 mm presented different motion laws. The particles with smaller size were easier to disperse, and the cloud that formed was larger and more uniform
The Intrahepatic Expression and Distribution of BTLA and its Ligand HVEM in patients with HBV-related acute-on-chronic liver failure
Abstract Objective It has been demonstrated that signals from the inhibitory receptor B and T lymphocyte attenuator (BTLA) are involved in regulating the pathogenesis of infectious diseases. However, the expression and anatomical distribution of BTLA and its ligand, the herpes virus entry mediator (HVEM), have not yet been determined in cases of HBV-related acute-on-chronic liver failure (HBV-ACLF) patients. Methods In this study, the expression of BTLA and HVEM in liver tissues from HBV-ACLF, chronic hepatitis B (CHB) patients and healthy individuals was analyzed by immunohistochemistry. Results The results of this analysis demonstrated that both molecules were observed in the HBV-ACLF samples and that their expression was chiefly in the infiltrating inflammatory cells and the damaged bile ducts. However, they were absent in liver sections from CHB patients and healthy controls. Immunofluorescence double-staining indicated that BTLA was found on CK-18+ epithelial cells, CD31+ endothelial cells, CD68+ macrophages, CD56+ NK cells, CD16+ monocytes, CD3+ , CD8+ T cells, and Foxp3+ regulatory T cells (Treg). By contrast, HVEM expression was restricted to CK18+ epithelial cells and CD68+ macrophages. Moreover, the expression of several members of the B7 superfamily, including PD-L1, PD-L2, B7-H3 and B7-H4, was also detected in these liver tissues, and these proteins were co-expressed with HVEM. Interestingly, the expression of fibrinogen-like protein 2 (FGL2), a virus-induced procoagulant molecule, was also found in liver sections from HBV-ACLF, this molecule also co-expresses with BTLA and HVEM. Conclusions These results suggest that BTLA-HVEM signaling is likely to affect the pathogenesis of HBV-ACLF, a clear understanding of the functional roles of these proteins should further elucidate the disease process. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/8080806838149123</p
Measurements and analysis of solar spectrum in near space
The experiment for measuring the solar spectrum at different latitudes and altitudes was conducted to obtain a suitable Air Mass Zero (AM0) standard solar cell calibration strategy with high altitude balloon flight calibration method. This is the world’s first acquisition of solar spectrum data at an altitude of 35 km using high-altitude balloon platform. The solar spectrum at the upper boundary of the atmosphere was measured and the spectral distribution was obtained from 20 to 35 km during the ascent. The results show that spectral distribution at 35 km is almost equivalent to that of AM0, the peak irradiance at 35 km is close to that of AM0, and the highest peak of this spectrum is at 450.2 nm. Comparing the results taken at different altitude, the effect of ozone, oxygen and water vapor is clearly seen. The measurement methods and results discussed in this paper can assist in verifying the accuracy of space solar cell calibration using high-altitude balloons. It could also provide a reference for the design of photovoltaic energy systems for near space aircrafts. Finally, the results taken from the launch site may be of use for the air quality monitoring and the design of photovoltaic system used in ground-based solar power generation in the Qinghai-Tibet Plateau
Determination of Nitrofuran Metabolites in Complex Food Matrices Using a Rough, Cheap, Easy-Made Wooden-Tip-Based Solid-Phase Microextraction Probe and LC-MS/MS
In this study, a rough, cheap, easy-made wooden-tip-based solid-phase microextraction (SPME) probe was first developed for simultaneous determination of 4 nitrofuran metabolite derivatives in complex food matrices via LC-MS/MS. A simple dip-coating method was used to coat wooden tips with biocompatible polyacrylonitrile (PAN) and N-vinylpyrrolidone-co-divinylbenzene, also known as HLB particles, which served as the extractive substrate in the proposed device. Compared with the traditional solid-phase extraction (SPE) method, the proposed device shortens sample clean-up time, reduces solvent consumption, and decreases testing costs. In addition, the main parameters affecting the SPME procedure efficiency were investigated in detail and the optimal conditions were found. The method was validated using three different food matrixes (pork, croaker, and honey) by spiking with the four metabolites at 0.5, 1.0, and 5.0 μg/kg, as well as their internal standards. The average recovery of all nitrofuran metabolite derivatives ranges from 97.4–109.5% (pork), 87.5–112.7% (croaker), and 98.6–109.0% (honey). Relative standard deviations were all <10% for intraday and interday precision. The values of limit of detection and limit of quantification were, respectively, ranging from 0.011 to 0.123 and 0.033 to 0.369 μg/kg (pork), 0.009 to 0.112 and 0.027 to 0.339 μg/kg (croaker), and 0.010 to 0.131 and 0.030 to 0.293 μg/kg (honey). The presented method was applied to the analysis of real positive samples