16 research outputs found

    Oscillation of Third-Order Neutral Delay Differential Equations

    Get PDF
    The purpose of this paper is to examine oscillatory properties of the third-order neutral delay differential equation [a(t)(b(t)(x(t)+p(t)x(σ(t)))′)′]′+q(t)x(τ(t))=0. Some oscillatory and asymptotic criteria are presented. These criteria improve and complement those results in the literature. Moreover, some examples are given to illustrate the main results

    Data-Driven Predictive Torque Coordination Control during Mode Transition Process of Hybrid Electric Vehicles

    No full text
    Torque coordination control significantly affects the mode transition quality during the mode transition dynamic process of hybrid electric vehicles (HEV). Most of the existing torque coordination control methods are based on the mechanism model, whose control effect heavily depends on the modeling accuracy of the HEV powertrain. However, the powertrain structure is so complex, that it is difficult to establish its precise mechanism model. In this paper, a torque coordination control strategy using the data-driven predictive control (DDPC) technique is proposed to overcome the shortcomings of mechanism model-based control methods for a clutch-enabled HEV. The proposed control strategy is only based on the measured input-output data in the HEV powertrain, and no mechanism model is needed. The conflicting control requirements of comfortability and economy are included in the cost function. The actual physical constraints of actuators are also explicitly taken into account in the solving process of the data-driven predictive controller. The co-simulation results in Cruise and Simulink validate the effectiveness of the proposed control strategy and demonstrate that the DDPC method can achieve less vehicle jerk, faster mode transition and smaller clutch frictional losses compared with the traditional model predictive control (MPC) method

    A Generalization of Linear and Nonlinear Retarded Integral Inequalities in Two Independent Variables

    No full text
    Integral inequalities, which provide explicit bounds on unknown functions, are used to serve as handy tools in the study of the qualitative properties of solutions to differential and integral equations. By utilizing some analysis techniques, such as amplification method, differential, and integration, several new types of linear and nonlinear retarded integral inequalities in two independent variables are provided. These results generalize and complement previous ones. An illustrative example is given to support the obtained results. The study of the numerical example shows that the new results presented in this paper work well in the analysis of retarded integral inequalities in two independent variables

    H∞ Estimation for a Class of Lipschitz Nonlinear Discrete-Time Systems with Time Delay

    Get PDF
    The issue of H∞ estimation for a class of Lipschitz nonlinear discrete-time systems with time delay and disturbance input is addressed. First, through integrating the H∞ filtering performance index with the Lipschitz conditions of the nonlinearity, the design of robust estimator is formulated as a positive minimum problem of indefinite quadratic form. Then, by introducing the Krein space model and applying innovation analysis approach, the minimum of the indefinite quadratic form is obtained in terms of innovation sequence. Finally, through guaranteeing the positivity of the minimum, a sufficient condition for the existence of the H∞ estimator is proposed and the estimator is derived in terms of Riccati-like difference equations. The proposed algorithm is proved to be effective by a numerical example

    A Novel Torque Coordination Control Strategy of a Single-Shaft Parallel Hybrid Electric Vehicle Based on Model Predictive Control

    No full text
    The torque coordination control during mode transition is a very important task for hybrid electric vehicle (HEV) with a clutch serving as the key enabling actuator element. Poor coordination will deteriorate the drivability of the driver and lead to excessive wearing to the clutch friction plates. In this paper, a novel torque coordination control strategy for a single-shaft parallel hybrid electric vehicle is presented to coordinate the motor torque, engine torque, and clutch torque so that the seamless mode switching can be achieved. Different to the existing model predictive control (MPC) methods, only one model predictive controller is needed and the clutch torque is taken as an optimized variable rather than a known parameter. Furthermore, the successful idea of model reference control (MRC) is also used for reference to generate the set-point signal required by MPC. The parameter sensitivity is studied for better performance of the proposed model predictive controller. The simulation results validate that the proposed novel torque coordination control strategy has less vehicle jerk, less torque interruption, and smaller clutch frictional losses, compared with the baseline method. In addition, the sensitivity and adaptiveness of the proposed novel torque coordination control strategy are evaluated

    Wave and Meso-Scale Eddy Climate in the Arctic Ocean

    No full text
    Under global climate change, the characteristics of oceanic dynamics are gradually beginning to change due to melting sea ice. This study focused on inter-annual variation in waves and mesoscale eddies (radius > 40 km) in the Arctic Ocean from 1993 to 2021. The waves were simulated by a numerical wave model, WAVEWATCH-III (WW3), which included a parameterization of ice–wave interaction. The long-term wind data were from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), and current and sea level data from the HYbrid Coordinate Ocean Model (HYCOM)were used as the forcing fields. The simulated significant wave heights (SWHs) were validated against the 2012 measurements from the Jason-2 altimeter, yielding a 0.55 m root mean square error (RMSE) with a 0.95 correlation (COR). The seasonal variation in WW3-simulated SWH from 2021 to 2022 showed that the SWH was the lowest in summer (July and August 2021) and highest in winter (November 2021 to April 2022). This result indicates that parts of the Arctic could become navigable in summer. The mesoscale eddies were identified using a daily-averaged sea level anomalies (SLA) product with a spatial resolution of a 0.25° grid for 1993−2021. We found that the activity intensity (EKE) and radius of mesoscale eddies in the spatial distribution behaved in opposing ways. The analysis of seasonal variation showed that the increase in eddy activity could lead to wave growth. The amplitude of SWH peaks was reduced when the Arctic Oscillation Index (AOI) was 0.5, especially in the case of swells. The amplitude of SWH oscillation was low, and the EKE and radius of eddies were relatively small. Although the radius and EKE of eddies were almost similar to the AOI, the waves also influenced the eddies

    RNA-binding proteins potentially regulate the alternative splicing of cell cycle-associated genes in proliferative diabetic retinopathy

    No full text
    Abstract RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP–AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP–AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness

    Additional file 2: of Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis

    No full text
    Germination of the CiNAC3 transgenic seeds under ABA treatment. (A) The transgenic lines showed a higher germination rate on 3 μM ABA medium compared with wild-type. The picture was taken 7 d (3 d for control) after imbibition. The germination rate of wild-type and two overexpression lines on medium with (B) or without (C) 6 μM ABA. (D) Germination of transgenic seeds without stratification. Error bars are standard errors of the means from three replications. Three independent biological replicates have been performed. (TIFF 1072 kb

    Additional file 6: of Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis

    No full text
    Stress responsive marker genes profile by quantitative real-time PCR analysis in the transgenic plants. ABA signaling genes (A), salt signaling genes and some stress responsive genes (B), (C) were detected. Two-week old seedlings with or without treatment were harvested. Expression values were calculated using 2-ΔΔCT method and AtEF1a as endogenous control. Two independent biological replicates were performed with similar result. Three technical replicates of each biological replicate were analyzed in quantitative real-time PCR analysis. (TIFF 212 kb
    corecore