45 research outputs found
Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer
We propose a predictive sliding mode control (PSMC) scheme for attitude control of hypersonic vehicle (HV) with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO). First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC), which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC) is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme
Research on the Application of an Information System in Monitoring the Dynamic Deformation of a High-Rise Building
With the acceleration of urbanization, there are increasingly more high-rise buildings in cities. In turn, high-rise building collapse accidents occur frequently. The causes of the danger, in addition to the extremely severe stress, are predominantly due to the long-term role of unstable factors, resulting in an unrecoverable internal structure. Therefore, it is advisable to monitor the dynamic deformation of buildings to prevent accidents. However, there is no particularly mature application system on the market to enable this monitoring, so our research group has carried out a long-term research in this field. This paper introduces the design of a set of practical information systems by using information technology and the principle of close-range photogrammetry. The system used the photographing scale transformation-time baseline parallax (PST-TBP) method to analyse image data collected with a digital camera, implement close-range photogrammetry, and input the image data into a computer. A building deformation diagram is obtained using our own software. The associated deformation curve can clearly reproduce the building deformation trend to monitor the building health. We conducted many laboratory simulation experiments to verify the information system, and the verification results prove that this process is rigorous. To apply this information system to a real-life scenario as soon as possible, we further studied its application to high-rise buildings, improved the system by using data and experience obtained by monitoring the tallest local building, and achieved good results. Finally, combined with the development of current intelligent technology, directions for system improvement are explored
Prediction Model and Experimental Study on Braking Distance under Emergency Braking with Heavy Load of Escalator
In order to study the relationship between the braking distance and the load of escalator and realize the prediction of the rated load braking distance with a little load, the method of combining theoretical analysis and experimental research is used. First, the dynamic characteristics of the escalator during emergency braking are analyzed, and the prediction model of the braking distance of the escalator under different loads is derived based on the law of conservation of energy. Furthermore, the influence coefficients under different loads were determined through experimental studies, the model was revised, and the concept of equivalent no-load kinetic energy (ENKE) was proposed. The research shows that the braking distance of the escalator increases nonlinearly with the increase in load. When the no-load braking distance and the 25% rated load braking distance change greatly, the braking distance increases faster as the load increases; the escalators with large brake force have a small ENKE and are easy to stop. Otherwise, it is difficult to stop. The test results show that the comparison between the predicted value of the prediction model and the measured value has a maximum error of 2.7%, and the maximum error at rated load is only 2.0%, which fully meets the needs of engineering measurement. And the prediction method reduces test costs, enhances test security, and improves test coverage
Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of <i>C. Neoformans</i> Infection
Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection
The Time-of-Arrival Offset Estimation in Neural Network Atomic Denoising in Wireless Location
With the increasing demand for wireless location services, it is of great interest to reduce the deployment cost of positioning systems. For this reason, indoor positioning based on WiFi has attracted great attention. Compared with the received signal strength indicator (RSSI), channel state information (CSI) captures the radio propagation environment more accurately. However, it is necessary to take signal bandwidth, interferences, noises, and other factors into account for accurate CSI-based positioning. In this paper, we propose a novel dictionary filtering method that uses the direct weight determination method of a neural network to denoise the dictionary and uses compressive sensing (CS) to extract the channel impulse response (CIR). A high-precision time-of-arrival (TOA) is then estimated by peak search. A median value filtering algorithm is used to locate target devices based on the time-difference-of-arrival (TDOA) technique. We demonstrate the superior performance of the proposed scheme experimentally, using data collected with a WiFi positioning testbed. Compared with the fingerprint location method, the proposed location method does not require a site survey in advance and therefore enables a fast system deployment
Theoretical Analysis of the Catalytic Hydrolysis Mechanism of HCN over Cu-ZSM-5
HCN catalytic hydrolysis mechanism over Cu-ZSM-5 was investigated based on the density functional theory (DFT) with 6-31++g (d, p) basis set. Five paths (A, B, C, D, and E) were designed. For path A and path B, the first step is the nucleophilic attack of water molecule. Next, the hydrogen atom of H2O is transferred to the nitrogen atom first for path A, while in path B, the hydrogen atom of the HCN is first transferred to the nitrogen atom. In path C, HCN isomerizes to HNC initially, and the remaining steps are similar to that of path A. The H atom of HCN shifts to Cu-ZSM-5 initially in path D, and the H atom is transferred to N atom subsequently. The last step is the attack on water molecule. The first step for path E is similar to that of path D. The next step is the attack on water molecule, in which the H atom of water molecule shifts to N atom, and the H on Cu-ZSM-5 shifts to the N atom. Meanwhile, the H atom of oxygen atom is transferred to the N atom. The results show that path C is the most favorable path, with the lowest free energy barrier (35.45 kcal/mol). The results indicate that the Cu-ZSM-5 strongly reduces the energy barrier of HCN and isomerizes to HNC, making it an effective catalyst for HCN hydrolysis
Study on Theoretical Model and Test Method of Vertical Vibration of Elevator Traction System
In order to study the dynamic characteristics of the elevator, the response characteristics of the elevator under normal operation and emergency braking conditions are analyzed. In this paper, the centralized mass discretization model is used to study the vibration characteristics of the elevator traction system under the external excitation. Firstly, the vibration equation of the elevator multi-degrees-of-freedom (abbreviated as DOF) system is established. Then, the vibration characteristics of the three DOF system are analyzed, and the natural frequencies and modes are obtained. The free vibration equation and forced vibration equation are obtained, and the theoretical solutions are obtained. Finally, the test method proposed in this paper is used to test the normal operation and emergency braking of the elevator. The test results show that, under normal operation conditions, the measured speed and distance errors are not more than 4.2%, the up running distance measured by the elevator is larger than the actual value, while the down running distance is smaller than the actual value; under emergency braking condition, because the steel wire rope can only bear the pulling force, the peak acceleration fluctuation in the up emergency braking process is large, while the down emergency braking acceleration fluctuation is small. Therefore, the elevator vibration analysis model and the vibration test method proposed in this paper can be used for the analysis of elevator dynamic performance, which has great reference value for the safety performance research of the elevator traction system
Theoretical Analysis of the Catalytic Hydrolysis Mechanism of HCN over Cu-ZSM-5
HCN catalytic hydrolysis mechanism over Cu-ZSM-5 was investigated based on the density functional theory (DFT) with 6-31++g (d, p) basis set. Five paths (A, B, C, D, and E) were designed. For path A and path B, the first step is the nucleophilic attack of water molecule. Next, the hydrogen atom of H2O is transferred to the nitrogen atom first for path A, while in path B, the hydrogen atom of the HCN is first transferred to the nitrogen atom. In path C, HCN isomerizes to HNC initially, and the remaining steps are similar to that of path A. The H atom of HCN shifts to Cu-ZSM-5 initially in path D, and the H atom is transferred to N atom subsequently. The last step is the attack on water molecule. The first step for path E is similar to that of path D. The next step is the attack on water molecule, in which the H atom of water molecule shifts to N atom, and the H on Cu-ZSM-5 shifts to the N atom. Meanwhile, the H atom of oxygen atom is transferred to the N atom. The results show that path C is the most favorable path, with the lowest free energy barrier (35.45 kcal/mol). The results indicate that the Cu-ZSM-5 strongly reduces the energy barrier of HCN and isomerizes to HNC, making it an effective catalyst for HCN hydrolysis