208 research outputs found

    Unsupervised Gaze-aware Contrastive Learning with Subject-specific Condition

    Full text link
    Appearance-based gaze estimation has shown great promise in many applications by using a single general-purpose camera as the input device. However, its success is highly depending on the availability of large-scale well-annotated gaze datasets, which are sparse and expensive to collect. To alleviate this challenge we propose ConGaze, a contrastive learning-based framework that leverages unlabeled facial images to learn generic gaze-aware representations across subjects in an unsupervised way. Specifically, we introduce the gaze-specific data augmentation to preserve the gaze-semantic features and maintain the gaze consistency, which are proven to be crucial for effective contrastive gaze representation learning. Moreover, we devise a novel subject-conditional projection module that encourages a share feature extractor to learn gaze-aware and generic representations. Our experiments on three public gaze estimation datasets show that ConGaze outperforms existing unsupervised learning solutions by 6.7% to 22.5%; and achieves 15.1% to 24.6% improvement over its supervised learning-based counterpart in cross-dataset evaluations

    A Flexible Monopole Antenna with Dual-Notched Band Function for Ultrawideband Applications

    Get PDF
    We present a flexible ultrawideband (UWB) planar monopole antenna with dual-notched band characteristic printed on a polyimide substrate. The antenna is fed by a step coplanar waveguide (CPW) that provides smooth transitional impedance for improved matching. It operates from 2.76 to 10.6 GHz with return loss greater than 10 dB except for the notch band to reduce the interference with existing 3.5 GHz WiMAX band and 5.5 GHz WLAN band. With a combination of rectangular and circle patches in which the U-shaped slot is carved, the overall size of antenna is 30 mm × 20 mm. Moreover, a pair of arc-shaped stubs located at both sides of the feed line is utilized to create the notch band for WiMAX band. The results also show that the antenna has omnidirectional radiation pattern and smooth gain over the entire operational band

    Efficient Multi-objective Evolutionary 3D Neural Architecture Search for COVID-19 Detection with Chest CT Scans

    Full text link
    COVID-19 pandemic has spread globally for months. Due to its long incubation period and high testing cost, there is no clue showing its spread speed is slowing down, and hence a faster testing method is in dire need. This paper proposes an efficient Evolutionary Multi-objective neural ARchitecture Search (EMARS) framework, which can automatically search for 3D neural architectures based on a well-designed search space for COVID-19 chest CT scan classification. Within the framework, we use weight sharing strategy to significantly improve the search efficiency and finish the search process in 8 hours. We also propose a new objective, namely potential, which is of benefit to improve the search process's robustness. With the objectives of accuracy, potential, and model size, we find a lightweight model (3.39 MB), which outperforms three baseline human-designed models, i.e., ResNet3D101 (325.21 MB), DenseNet3D121 (43.06 MB), and MC3\_18 (43.84 MB). Besides, our well-designed search space enables the class activation mapping algorithm to be easily embedded into all searched models, which can provide the interpretability for medical diagnosis by visualizing the judgment based on the models to locate the lesion areas.Comment: Neural Architecture Search, Evolutionary Algorithm, COVID-19, C

    ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop

    Full text link
    Industrial recommender systems face the challenge of operating in non-stationary environments, where data distribution shifts arise from evolving user behaviors over time. To tackle this challenge, a common approach is to periodically re-train or incrementally update deployed deep models with newly observed data, resulting in a continual training process. However, the conventional learning paradigm of neural networks relies on iterative gradient-based updates with a small learning rate, making it slow for large recommendation models to adapt. In this paper, we introduce ReLoop2, a self-correcting learning loop that facilitates fast model adaptation in online recommender systems through responsive error compensation. Inspired by the slow-fast complementary learning system observed in human brains, we propose an error memory module that directly stores error samples from incoming data streams. These stored samples are subsequently leveraged to compensate for model prediction errors during testing, particularly under distribution shifts. The error memory module is designed with fast access capabilities and undergoes continual refreshing with newly observed data samples during the model serving phase to support fast model adaptation. We evaluate the effectiveness of ReLoop2 on three open benchmark datasets as well as a real-world production dataset. The results demonstrate the potential of ReLoop2 in enhancing the responsiveness and adaptiveness of recommender systems operating in non-stationary environments.Comment: Accepted by KDD 2023. See the project page at https://xpai.github.io/ReLoo

    Doped Lead Fluoride Chloride Crystals for the HHCAL Detector Concept

    Full text link
    • …
    corecore