1 research outputs found
Effects of Fumed and Mesoporous Silica Nanoparticles on the Properties of Sylgard 184 Polydimethylsiloxane
The effects of silica nanoparticles on the properties of a commonly used Sylgard 184 polydimethylsiloxane (PDMS) in microfluidics were systemically studied. Two kinds of silica nanoparticles, A380 fumed silica nanoparticles and MCM-41 mesoporous silica nanoparticles, were individually doped into PDMS, and the properties of PDMS with these two different silica nanoparticles were separately tested and compared. The thermal and mechanical stabilities of PDMS were significantly enhanced, and the swelling characteristics were also improved by doping these two kinds of nanoparticles. However, the transparency of PDMS was decreased due to the light scattering by nanoparticles. By contrast, PDMS/MCM-41 nanocomposites showed a lower coefficient of thermal expansion (CTE) owing to the mesoporous structure of MCM-41 nanoparticles, while PDMS/A380 nanocomposites showed a larger elastic modulus and better transparency due to the smaller size of A380 nanoparticles. In addition, A380 and MCM-41 nanoparticles had the similar effects on the swelling characteristics of PDMS. The swelling ratio of PDMS in toluene was decreased to 0.68 when the concentration of nanoparticles was 10 wt %